MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcz Unicode version

Theorem pcz 12933
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Distinct variable group:    A, p

Proof of Theorem pcz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 12914 . . . 4  |-  ( ( p  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( p  pCnt  A
) )
21ancoms 439 . . 3  |-  ( ( A  e.  ZZ  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  A ) )
32ralrimiva 2626 . 2  |-  ( A  e.  ZZ  ->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
)
4 elq 10318 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
5 nnz 10045 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  ZZ )
6 dvds0 12544 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  ||  0 )
75, 6syl 15 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  ||  0 )
87ad2antlr 707 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  0 )
9 simpr 447 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  x  = 
0 )
108, 9breqtrrd 4049 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  x )
1110a1d 22 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
12 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
13 simplll 734 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  e.  ZZ )
14 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  =/=  0 )
15 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  y  e.  NN )
16 pcdiv 12905 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( p  pCnt  (
x  /  y ) )  =  ( ( p  pCnt  x )  -  ( p  pCnt  y ) ) )
1712, 13, 14, 15, 16syl121anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( x  /  y ) )  =  ( ( p 
pCnt  x )  -  (
p  pCnt  y )
) )
1817breq2d 4035 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  0  <_  ( ( p  pCnt  x
)  -  ( p 
pCnt  y ) ) ) )
19 pczcl 12901 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( p  pCnt  x )  e.  NN0 )
2012, 13, 14, 19syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  NN0 )
2120nn0red 10019 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  RR )
2212, 15pccld 12903 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  NN0 )
2322nn0red 10019 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  RR )
2421, 23subge0d 9362 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( (
p  pCnt  x )  -  ( p  pCnt  y ) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2518, 24bitrd 244 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2625ralbidva 2559 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
27 id 19 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
28 pc2dvds 12931 . . . . . . . . . . 11  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
295, 27, 28syl2anr 464 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3029adantr 451 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( y  ||  x  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3126, 30bitr4d 247 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  y  ||  x
) )
3231biimpd 198 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
3311, 32pm2.61dane 2524 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
y  ||  x )
)
345adantl 452 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  ZZ )
35 nnne0 9778 . . . . . . . 8  |-  ( y  e.  NN  ->  y  =/=  0 )
3635adantl 452 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  =/=  0 )
37 simpl 443 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  x  e.  ZZ )
38 dvdsval2 12534 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  x  e.  ZZ )  ->  (
y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
3934, 36, 37, 38syl3anc 1182 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
4033, 39sylibd 205 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
( x  /  y
)  e.  ZZ ) )
41 oveq2 5866 . . . . . . . 8  |-  ( A  =  ( x  / 
y )  ->  (
p  pCnt  A )  =  ( p  pCnt  ( x  /  y ) ) )
4241breq2d 4035 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  (
0  <_  ( p  pCnt  A )  <->  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
4342ralbidv 2563 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  <->  A. p  e.  Prime  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
44 eleq1 2343 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A  e.  ZZ  <->  ( x  /  y )  e.  ZZ ) )
4543, 44imbi12d 311 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( A. p  e. 
Prime  0  <_  ( p 
pCnt  A )  ->  A  e.  ZZ )  <->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  ( x  /  y )  e.  ZZ ) ) )
4640, 45syl5ibrcom 213 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A. p  e.  Prime  0  <_  (
p  pCnt  A )  ->  A  e.  ZZ ) ) )
4746rexlimivv 2672 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
484, 47sylbi 187 . 2  |-  ( A  e.  QQ  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
493, 48impbid2 195 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   class class class wbr 4023  (class class class)co 5858   0cc0 8737    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   QQcq 10316    || cdivides 12531   Primecprime 12758    pCnt cpc 12889
This theorem is referenced by:  pcmptdvds  12942  qexpz  12949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890
  Copyright terms: Public domain W3C validator