MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2b Unicode version

Theorem peano2b 4672
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b  |-  ( A  e.  om  <->  suc  A  e. 
om )

Proof of Theorem peano2b
StepHypRef Expression
1 limom 4671 . 2  |-  Lim  om
2 limsuc 4640 . 2  |-  ( Lim 
om  ->  ( A  e. 
om 
<->  suc  A  e.  om ) )
31, 2ax-mp 8 1  |-  ( A  e.  om  <->  suc  A  e. 
om )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    e. wcel 1684   Lim wlim 4393   suc csuc 4394   omcom 4656
This theorem is referenced by:  nnsuc  4673  peano2  4676  peano5  4679  frsuc  6449  frsucmptn  6451  nnaordi  6616  nnmsucr  6623  omsmolem  6651  php  7045  php4  7048  omsucdomOLD  7056  unblem1  7109  isfinite2  7115  inf0  7322  inf3lem1  7329  inf3lem5  7333  cantnfp1lem3  7382  cantnflem1  7391  itunisuc  8045  ituniiun  8048  indpi  8531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
  Copyright terms: Public domain W3C validator