Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrdich Structured version   Unicode version

Theorem pell14qrdich 26946
Description: A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrdich  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  e.  (Pell1QR `  D )  \/  (
1  /  A )  e.  (Pell1QR `  D
) ) )

Proof of Theorem pell14qrdich
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 26926 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell14QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
21biimpa 472 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  e.  RR  /\ 
E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) ) )
3 simplrr 739 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
b  e.  ZZ )
4 elznn0 10301 . . . . . . . 8  |-  ( b  e.  ZZ  <->  ( b  e.  RR  /\  ( b  e.  NN0  \/  -u b  e.  NN0 ) ) )
53, 4sylib 190 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( b  e.  RR  /\  ( b  e.  NN0  \/  -u b  e.  NN0 ) ) )
65simprd 451 . . . . . 6  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( b  e.  NN0  \/  -u b  e.  NN0 ) )
7 simplr 733 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  A  e.  RR )
87ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  b  e.  NN0 )  ->  A  e.  RR )
9 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  a  e.  NN0 )
109ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  b  e.  NN0 )  -> 
a  e.  NN0 )
11 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  b  e.  NN0 )  -> 
b  e.  NN0 )
12 simplr 733 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  b  e.  NN0 )  -> 
( A  =  ( a  +  ( ( sqr `  D )  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 ) )
13 rsp2e 2771 . . . . . . . . . . 11  |-  ( ( a  e.  NN0  /\  b  e.  NN0  /\  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) )  ->  E. a  e.  NN0  E. b  e.  NN0  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) )
1410, 11, 12, 13syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  b  e.  NN0 )  ->  E. a  e.  NN0  E. b  e.  NN0  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) )
158, 14jca 520 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  b  e.  NN0 )  -> 
( A  e.  RR  /\ 
E. a  e.  NN0  E. b  e.  NN0  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) ) )
1615ex 425 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( b  e.  NN0  ->  ( A  e.  RR  /\ 
E. a  e.  NN0  E. b  e.  NN0  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) ) ) )
17 elpell1qr 26924 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  NN0  E. b  e. 
NN0  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
1817ad4antr 714 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  NN0  E. b  e. 
NN0  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
1916, 18sylibrd 227 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( b  e.  NN0  ->  A  e.  (Pell1QR `  D
) ) )
207ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  A  e.  RR )
21 pell14qrne0 26935 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  =/=  0 )
2221ad4antr 714 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  A  =/=  0 )
2320, 22rereccld 9846 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( 1  /  A
)  e.  RR )
249ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  a  e.  NN0 )
25 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  -> 
-u b  e.  NN0 )
26 pell14qrre 26934 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR )
2726recnd 9119 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  CC )
2827, 21reccld 9788 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( 1  /  A
)  e.  CC )
2928ad3antrrr 712 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( 1  /  A
)  e.  CC )
30 nn0cn 10236 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  NN0  ->  a  e.  CC )
3130ad2antrl 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  a  e.  CC )
32 eldifi 3471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  ( NN  \NN )  ->  D  e.  NN )
3332nncnd 10021 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  ( NN  \NN )  ->  D  e.  CC )
3433ad3antrrr 712 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  D  e.  CC )
3534sqrcld 12244 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( sqr `  D )  e.  CC )
36 zcn 10292 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  e.  ZZ  ->  b  e.  CC )
3736ad2antll 711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  b  e.  CC )
3837negcld 9403 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  -u b  e.  CC )
3935, 38mulcld 9113 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( sqr `  D )  x.  -u b )  e.  CC )
4031, 39addcld 9112 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( a  +  ( ( sqr `  D )  x.  -u b
) )  e.  CC )
4140adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( a  +  ( ( sqr `  D
)  x.  -u b
) )  e.  CC )
4227ad3antrrr 712 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  ->  A  e.  CC )
4321ad3antrrr 712 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  ->  A  =/=  0 )
4427, 21recidd 9790 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
1  /  A ) )  =  1 )
4544ad3antrrr 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( A  x.  (
1  /  A ) )  =  1 )
46 simprr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )
4745, 46eqtr4d 2473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( A  x.  (
1  /  A ) )  =  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) ) )
4831adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  a  e.  CC )
4935, 37mulcld 9113 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( sqr `  D )  x.  b )  e.  CC )
5049adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  (
( sqr `  D
)  x.  b )  e.  CC )
51 subsq 11493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  ( ( sqr `  D
)  x.  b )  e.  CC )  -> 
( ( a ^
2 )  -  (
( ( sqr `  D
)  x.  b ) ^ 2 ) )  =  ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
a  -  ( ( sqr `  D )  x.  b ) ) ) )
5248, 50, 51syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  (
( a ^ 2 )  -  ( ( ( sqr `  D
)  x.  b ) ^ 2 ) )  =  ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
a  -  ( ( sqr `  D )  x.  b ) ) ) )
5335, 37sqmuld 11540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( (
( sqr `  D
)  x.  b ) ^ 2 )  =  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )
5434sqsqrd 12246 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( sqr `  D ) ^
2 )  =  D )
5554oveq1d 6099 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( (
( sqr `  D
) ^ 2 )  x.  ( b ^
2 ) )  =  ( D  x.  (
b ^ 2 ) ) )
5653, 55eqtr2d 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( D  x.  ( b ^ 2 ) )  =  ( ( ( sqr `  D
)  x.  b ) ^ 2 ) )
5756oveq2d 6100 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  ( ( a ^
2 )  -  (
( ( sqr `  D
)  x.  b ) ^ 2 ) ) )
5857adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  ( ( a ^ 2 )  -  ( ( ( sqr `  D )  x.  b
) ^ 2 ) ) )
59 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )
6035, 37mulneg2d 9492 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( sqr `  D )  x.  -u b )  =  -u ( ( sqr `  D
)  x.  b ) )
6160oveq2d 6100 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( a  +  ( ( sqr `  D )  x.  -u b
) )  =  ( a  +  -u (
( sqr `  D
)  x.  b ) ) )
62 negsub 9354 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  e.  CC  /\  ( ( sqr `  D
)  x.  b )  e.  CC )  -> 
( a  +  -u ( ( sqr `  D
)  x.  b ) )  =  ( a  -  ( ( sqr `  D )  x.  b
) ) )
6362eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  CC  /\  ( ( sqr `  D
)  x.  b )  e.  CC )  -> 
( a  -  (
( sqr `  D
)  x.  b ) )  =  ( a  +  -u ( ( sqr `  D )  x.  b
) ) )
6431, 49, 63syl2anc 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( a  -  ( ( sqr `  D )  x.  b
) )  =  ( a  +  -u (
( sqr `  D
)  x.  b ) ) )
6561, 64eqtr4d 2473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( a  +  ( ( sqr `  D )  x.  -u b
) )  =  ( a  -  ( ( sqr `  D )  x.  b ) ) )
6665adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  (
a  +  ( ( sqr `  D )  x.  -u b ) )  =  ( a  -  ( ( sqr `  D
)  x.  b ) ) )
6759, 66oveq12d 6102 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  ( A  x.  ( a  +  ( ( sqr `  D )  x.  -u b
) ) )  =  ( ( a  +  ( ( sqr `  D
)  x.  b ) )  x.  ( a  -  ( ( sqr `  D )  x.  b
) ) ) )
6852, 58, 673eqtr4d 2480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  A  =  ( a  +  ( ( sqr `  D
)  x.  b ) ) )  ->  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  ( A  x.  ( a  +  ( ( sqr `  D
)  x.  -u b
) ) ) )
6968adantrr 699 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  ( A  x.  ( a  +  ( ( sqr `  D
)  x.  -u b
) ) ) )
7047, 69eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( A  x.  (
1  /  A ) )  =  ( A  x.  ( a  +  ( ( sqr `  D
)  x.  -u b
) ) ) )
7129, 41, 42, 43, 70mulcanad 9662 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  -u b
) ) )
7271adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  -u b
) ) )
7337ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  b  e.  CC )
74 sqneg 11447 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  CC  ->  ( -u b ^ 2 )  =  ( b ^
2 ) )
7573, 74syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( -u b ^
2 )  =  ( b ^ 2 ) )
7675oveq2d 6100 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( D  x.  ( -u b ^ 2 ) )  =  ( D  x.  ( b ^
2 ) ) )
7776oveq2d 6100 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( ( a ^
2 )  -  ( D  x.  ( -u b ^ 2 ) ) )  =  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) ) )
78 simplrr 739 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )
7977, 78eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( ( a ^
2 )  -  ( D  x.  ( -u b ^ 2 ) ) )  =  1 )
8072, 79jca 520 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D )  x.  -u b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( -u b ^ 2 ) ) )  =  1 ) )
81 oveq2 6092 . . . . . . . . . . . . . . . 16  |-  ( c  =  -u b  ->  (
( sqr `  D
)  x.  c )  =  ( ( sqr `  D )  x.  -u b
) )
8281oveq2d 6100 . . . . . . . . . . . . . . 15  |-  ( c  =  -u b  ->  (
a  +  ( ( sqr `  D )  x.  c ) )  =  ( a  +  ( ( sqr `  D
)  x.  -u b
) ) )
8382eqeq2d 2449 . . . . . . . . . . . . . 14  |-  ( c  =  -u b  ->  (
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  c
) )  <->  ( 1  /  A )  =  ( a  +  ( ( sqr `  D
)  x.  -u b
) ) ) )
84 oveq1 6091 . . . . . . . . . . . . . . . . 17  |-  ( c  =  -u b  ->  (
c ^ 2 )  =  ( -u b ^ 2 ) )
8584oveq2d 6100 . . . . . . . . . . . . . . . 16  |-  ( c  =  -u b  ->  ( D  x.  ( c ^ 2 ) )  =  ( D  x.  ( -u b ^ 2 ) ) )
8685oveq2d 6100 . . . . . . . . . . . . . . 15  |-  ( c  =  -u b  ->  (
( a ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  ( ( a ^ 2 )  -  ( D  x.  ( -u b ^ 2 ) ) ) )
8786eqeq1d 2446 . . . . . . . . . . . . . 14  |-  ( c  =  -u b  ->  (
( ( a ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  1  <->  (
( a ^ 2 )  -  ( D  x.  ( -u b ^ 2 ) ) )  =  1 ) )
8883, 87anbi12d 693 . . . . . . . . . . . . 13  |-  ( c  =  -u b  ->  (
( ( 1  /  A )  =  ( a  +  ( ( sqr `  D )  x.  c ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  1 )  <->  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D
)  x.  -u b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( -u b ^ 2 ) ) )  =  1 ) ) )
8988rspcev 3054 . . . . . . . . . . . 12  |-  ( (
-u b  e.  NN0  /\  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D )  x.  -u b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( -u b ^ 2 ) ) )  =  1 ) )  ->  E. c  e.  NN0  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D
)  x.  c ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  1 ) )
9025, 80, 89syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  E. c  e.  NN0  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D )  x.  c ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  1 ) )
91 rspe 2769 . . . . . . . . . . 11  |-  ( ( a  e.  NN0  /\  E. c  e.  NN0  (
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  c
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  1 ) )  ->  E. a  e.  NN0  E. c  e.  NN0  (
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  c
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  1 ) )
9224, 90, 91syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  E. a  e.  NN0  E. c  e.  NN0  (
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  c
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  1 ) )
9323, 92jca 520 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  /\  A  e.  RR )  /\  ( a  e.  NN0  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  -u b  e.  NN0 )  ->  ( ( 1  /  A )  e.  RR  /\ 
E. a  e.  NN0  E. c  e.  NN0  (
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  c
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  1 ) ) )
9493ex 425 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( -u b  e.  NN0  ->  ( ( 1  /  A )  e.  RR  /\ 
E. a  e.  NN0  E. c  e.  NN0  (
( 1  /  A
)  =  ( a  +  ( ( sqr `  D )  x.  c
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  1 ) ) ) )
95 elpell1qr 26924 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
( ( 1  /  A )  e.  (Pell1QR `  D )  <->  ( (
1  /  A )  e.  RR  /\  E. a  e.  NN0  E. c  e.  NN0  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D
)  x.  c ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  1 ) ) ) )
9695ad4antr 714 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( ( 1  /  A )  e.  (Pell1QR `  D )  <->  ( (
1  /  A )  e.  RR  /\  E. a  e.  NN0  E. c  e.  NN0  ( ( 1  /  A )  =  ( a  +  ( ( sqr `  D
)  x.  c ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  1 ) ) ) )
9794, 96sylibrd 227 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( -u b  e.  NN0  ->  ( 1  /  A
)  e.  (Pell1QR `  D
) ) )
9819, 97orim12d 813 . . . . . 6  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( ( b  e. 
NN0  \/  -u b  e. 
NN0 )  ->  ( A  e.  (Pell1QR `  D
)  \/  ( 1  /  A )  e.  (Pell1QR `  D )
) ) )
996, 98mpd 15 . . . . 5  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D
) )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( A  e.  (Pell1QR `  D )  \/  (
1  /  A )  e.  (Pell1QR `  D
) ) )
10099ex 425 . . . 4  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  -> 
( A  e.  (Pell1QR `  D )  \/  (
1  /  A )  e.  (Pell1QR `  D
) ) ) )
101100rexlimdvva 2839 . . 3  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  A  e.  RR )  ->  ( E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( A  e.  (Pell1QR `  D
)  \/  ( 1  /  A )  e.  (Pell1QR `  D )
) ) )
102101expimpd 588 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( A  e.  RR  /\  E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( A  e.  (Pell1QR `  D )  \/  (
1  /  A )  e.  (Pell1QR `  D
) ) ) )
1032, 102mpd 15 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  e.  (Pell1QR `  D )  \/  (
1  /  A )  e.  (Pell1QR `  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708    \ cdif 3319   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    - cmin 9296   -ucneg 9297    / cdiv 9682   NNcn 10005   2c2 10054   NN0cn0 10226   ZZcz 10287   ^cexp 11387   sqrcsqr 12043  ◻NNcsquarenn 26913  Pell1QRcpell1qr 26914  Pell14QRcpell14qr 26916
This theorem is referenced by:  elpell1qr2  26949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-pell1qr 26919  df-pell14qr 26920  df-pell1234qr 26921
  Copyright terms: Public domain W3C validator