Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrgapw Structured version   Unicode version

Theorem pell14qrgapw 26939
Description: Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrgapw  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  2  <  A )

Proof of Theorem pell14qrgapw
StepHypRef Expression
1 2re 10069 . . 3  |-  2  e.  RR
21a1i 11 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  2  e.  RR )
3 eldifi 3469 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  ->  D  e.  NN )
433ad2ant1 978 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  D  e.  NN )
54nnrpd 10647 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  D  e.  RR+ )
6 1rp 10616 . . . . . . 7  |-  1  e.  RR+
76a1i 11 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  e.  RR+ )
85, 7rpaddcld 10663 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( D  +  1 )  e.  RR+ )
98rpsqrcld 12214 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR+ )
109rpred 10648 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR )
115rpsqrcld 12214 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( sqr `  D )  e.  RR+ )
1211rpred 10648 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( sqr `  D )  e.  RR )
1310, 12readdcld 9115 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  e.  RR )
14 pell14qrre 26920 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR )
15143adant3 977 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  A  e.  RR )
16 df-2 10058 . . 3  |-  2  =  ( 1  +  1 )
17 1re 9090 . . . . 5  |-  1  e.  RR
1817a1i 11 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  e.  RR )
194nnred 10015 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  D  e.  RR )
20 peano2re 9239 . . . . . . . 8  |-  ( D  e.  RR  ->  ( D  +  1 )  e.  RR )
2119, 20syl 16 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( D  +  1 )  e.  RR )
224nnge1d 10042 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  <_  D )
2319ltp1d 9941 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  D  <  ( D  +  1 ) )
2418, 19, 21, 22, 23lelttrd 9228 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  <  ( D  +  1 ) )
25 sq1 11476 . . . . . . 7  |-  ( 1 ^ 2 )  =  1
2625a1i 11 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
1 ^ 2 )  =  1 )
274nncnd 10016 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  D  e.  CC )
28 peano2cn 9238 . . . . . . . 8  |-  ( D  e.  CC  ->  ( D  +  1 )  e.  CC )
2927, 28syl 16 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  ( D  +  1 )  e.  CC )
3029sqsqrd 12241 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( D  + 
1 ) )
3124, 26, 303brtr4d 4242 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
1 ^ 2 )  <  ( ( sqr `  ( D  +  1 ) ) ^ 2 ) )
32 0le1 9551 . . . . . . 7  |-  0  <_  1
3332a1i 11 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  0  <_  1 )
349rpge0d 10652 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  0  <_  ( sqr `  ( D  +  1 ) ) )
3518, 10, 33, 34lt2sqd 11557 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
1  <  ( sqr `  ( D  +  1 ) )  <->  ( 1 ^ 2 )  < 
( ( sqr `  ( D  +  1 ) ) ^ 2 ) ) )
3631, 35mpbird 224 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  <  ( sqr `  ( D  +  1 ) ) )
3727sqsqrd 12241 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
( sqr `  D
) ^ 2 )  =  D )
3822, 26, 373brtr4d 4242 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
1 ^ 2 )  <_  ( ( sqr `  D ) ^ 2 ) )
3911rpge0d 10652 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  0  <_  ( sqr `  D
) )
4018, 12, 33, 39le2sqd 11558 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
1  <_  ( sqr `  D )  <->  ( 1 ^ 2 )  <_ 
( ( sqr `  D
) ^ 2 ) ) )
4138, 40mpbird 224 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  <_  ( sqr `  D
) )
4218, 18, 10, 12, 36, 41ltleaddd 9646 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
1  +  1 )  <  ( ( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) ) )
4316, 42syl5eqbr 4245 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  2  <  ( ( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) ) )
44 pell14qrgap 26938 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_  A )
452, 13, 15, 43, 44ltletrd 9230 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  2  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    \ cdif 3317   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    < clt 9120    <_ cle 9121   NNcn 10000   2c2 10049   RR+crp 10612   ^cexp 11382   sqrcsqr 12038  ◻NNcsquarenn 26899  Pell14QRcpell14qr 26902
This theorem is referenced by:  pellfundex  26949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-pell1qr 26905  df-pell14qr 26906  df-pell1234qr 26907
  Copyright terms: Public domain W3C validator