Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrgt0 Unicode version

Theorem pell14qrgt0 27047
Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrgt0  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <  A )

Proof of Theorem pell14qrgt0
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 27037 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell14QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
2 0cn 8847 . . . . . . . . . . . . . . 15  |-  0  e.  CC
32a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  e.  CC )
4 eldifi 3311 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  ( NN  \NN )  ->  D  e.  NN )
54ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  NN )
65nnred 9777 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  RR )
75nnnn0d 10034 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  NN0 )
87nn0ge0d 10037 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <_  D )
96, 8resqrcld 11916 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( sqr `  D )  e.  RR )
10 zre 10044 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ZZ  ->  b  e.  RR )
1110adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  b  e.  RR )
1211ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  b  e.  RR )
139, 12remulcld 8879 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( sqr `  D
)  x.  b )  e.  RR )
1413recnd 8877 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( sqr `  D
)  x.  b )  e.  CC )
153, 14abssubd 11951 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( 0  -  ( ( sqr `  D
)  x.  b ) ) )  =  ( abs `  ( ( ( sqr `  D
)  x.  b )  -  0 ) ) )
1614subid1d 9162 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( sqr `  D
)  x.  b )  -  0 )  =  ( ( sqr `  D
)  x.  b ) )
1716fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( ( ( sqr `  D )  x.  b )  - 
0 ) )  =  ( abs `  (
( sqr `  D
)  x.  b ) ) )
1815, 17eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( 0  -  ( ( sqr `  D
)  x.  b ) ) )  =  ( abs `  ( ( sqr `  D )  x.  b ) ) )
19 absresq 11803 . . . . . . . . . . . . . . . 16  |-  ( ( ( sqr `  D
)  x.  b )  e.  RR  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  =  ( ( ( sqr `  D )  x.  b ) ^
2 ) )
2013, 19syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  =  ( ( ( sqr `  D )  x.  b ) ^
2 ) )
216recnd 8877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  CC )
2221sqrcld 11935 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( sqr `  D )  e.  CC )
2311recnd 8877 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  b  e.  CC )
2423ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  b  e.  CC )
2522, 24sqmuld 11273 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( sqr `  D
)  x.  b ) ^ 2 )  =  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )
2621sqsqrd 11937 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( sqr `  D
) ^ 2 )  =  D )
2726oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( sqr `  D
) ^ 2 )  x.  ( b ^
2 ) )  =  ( D  x.  (
b ^ 2 ) ) )
2820, 25, 273eqtrd 2332 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  =  ( D  x.  ( b ^ 2 ) ) )
29 0lt1 9312 . . . . . . . . . . . . . . . . 17  |-  0  <  1
3029a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  1 )
31 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )
3230, 31breqtrrd 4065 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  ( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) ) )
3312resqcld 11287 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
b ^ 2 )  e.  RR )
346, 33remulcld 8879 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( D  x.  ( b ^ 2 ) )  e.  RR )
35 nn0re 9990 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  NN0  ->  a  e.  RR )
3635adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  a  e.  RR )
3736ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  a  e.  RR )
3837resqcld 11287 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
a ^ 2 )  e.  RR )
3934, 38posdifd 9375 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( D  x.  (
b ^ 2 ) )  <  ( a ^ 2 )  <->  0  <  ( ( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) ) ) )
4032, 39mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( D  x.  ( b ^ 2 ) )  <  ( a ^
2 ) )
4128, 40eqbrtrd 4059 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  <  ( a ^
2 ) )
4214abscld 11934 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( ( sqr `  D )  x.  b
) )  e.  RR )
4314absge0d 11942 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <_  ( abs `  (
( sqr `  D
)  x.  b ) ) )
44 nn0ge0 10007 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  0  <_ 
a )
4544adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  0  <_  a )
4645ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <_  a )
4742, 37, 43, 46lt2sqd 11295 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) )  <  a  <->  ( ( abs `  ( ( sqr `  D )  x.  b
) ) ^ 2 )  <  ( a ^ 2 ) ) )
4841, 47mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( ( sqr `  D )  x.  b
) )  <  a
)
4918, 48eqbrtrd 4059 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( 0  -  ( ( sqr `  D
)  x.  b ) ) )  <  a
)
50 0re 8854 . . . . . . . . . . . . 13  |-  0  e.  RR
5150a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  e.  RR )
5251, 13, 37absdifltd 11932 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
0  -  ( ( sqr `  D )  x.  b ) ) )  <  a  <->  ( (
( ( sqr `  D
)  x.  b )  -  a )  <  0  /\  0  < 
( ( ( sqr `  D )  x.  b
)  +  a ) ) ) )
5349, 52mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( ( sqr `  D )  x.  b
)  -  a )  <  0  /\  0  <  ( ( ( sqr `  D )  x.  b
)  +  a ) ) )
5453simprd 449 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  ( ( ( sqr `  D )  x.  b
)  +  a ) )
55 nn0cn 9991 . . . . . . . . . . . 12  |-  ( a  e.  NN0  ->  a  e.  CC )
5655adantr 451 . . . . . . . . . . 11  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  a  e.  CC )
5756ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  a  e.  CC )
5857, 14addcomd 9030 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
a  +  ( ( sqr `  D )  x.  b ) )  =  ( ( ( sqr `  D )  x.  b )  +  a ) )
5954, 58breqtrrd 4065 . . . . . . . 8  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  ( a  +  ( ( sqr `  D
)  x.  b ) ) )
6059adantrl 696 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
0  <  ( a  +  ( ( sqr `  D )  x.  b
) ) )
61 simprl 732 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  ->  A  =  ( a  +  ( ( sqr `  D )  x.  b
) ) )
6260, 61breqtrrd 4065 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
0  <  A )
6362ex 423 . . . . 5  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  -> 
0  <  A )
)
6463rexlimdvva 2687 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR )  ->  ( E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  A ) )
6564expimpd 586 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  e.  RR  /\  E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
0  <  A )
)
661, 65sylbid 206 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell14QR `  D )  ->  0  <  A ) )
6766imp 418 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557    \ cdif 3162   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ^cexp 11120   sqrcsqr 11734   abscabs 11735  ◻NNcsquarenn 27024  Pell14QRcpell14qr 27027
This theorem is referenced by:  pell14qrrp  27048  elpell14qr2  27050  elpell1qr2  27060  pellfundex  27074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-pell14qr 27031
  Copyright terms: Public domain W3C validator