Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrval Unicode version

Theorem pell14qrval 27036
Description: Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell14qrval  |-  ( D  e.  ( NN  \NN )  -> 
(Pell14QR `  D )  =  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  (
y  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } )
Distinct variable group:    y, z, w, D

Proof of Theorem pell14qrval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . . . . 8  |-  ( a  =  D  ->  ( sqr `  a )  =  ( sqr `  D
) )
21oveq1d 5889 . . . . . . 7  |-  ( a  =  D  ->  (
( sqr `  a
)  x.  w )  =  ( ( sqr `  D )  x.  w
) )
32oveq2d 5890 . . . . . 6  |-  ( a  =  D  ->  (
z  +  ( ( sqr `  a )  x.  w ) )  =  ( z  +  ( ( sqr `  D
)  x.  w ) ) )
43eqeq2d 2307 . . . . 5  |-  ( a  =  D  ->  (
y  =  ( z  +  ( ( sqr `  a )  x.  w
) )  <->  y  =  ( z  +  ( ( sqr `  D
)  x.  w ) ) ) )
5 oveq1 5881 . . . . . . 7  |-  ( a  =  D  ->  (
a  x.  ( w ^ 2 ) )  =  ( D  x.  ( w ^ 2 ) ) )
65oveq2d 5890 . . . . . 6  |-  ( a  =  D  ->  (
( z ^ 2 )  -  ( a  x.  ( w ^
2 ) ) )  =  ( ( z ^ 2 )  -  ( D  x.  (
w ^ 2 ) ) ) )
76eqeq1d 2304 . . . . 5  |-  ( a  =  D  ->  (
( ( z ^
2 )  -  (
a  x.  ( w ^ 2 ) ) )  =  1  <->  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) )
84, 7anbi12d 691 . . . 4  |-  ( a  =  D  ->  (
( y  =  ( z  +  ( ( sqr `  a )  x.  w ) )  /\  ( ( z ^ 2 )  -  ( a  x.  (
w ^ 2 ) ) )  =  1 )  <->  ( y  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
982rexbidv 2599 . . 3  |-  ( a  =  D  ->  ( E. z  e.  NN0  E. w  e.  ZZ  (
y  =  ( z  +  ( ( sqr `  a )  x.  w
) )  /\  (
( z ^ 2 )  -  ( a  x.  ( w ^
2 ) ) )  =  1 )  <->  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
109rabbidv 2793 . 2  |-  ( a  =  D  ->  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  a
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( a  x.  ( w ^ 2 ) ) )  =  1 ) }  =  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  (
y  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } )
11 df-pell14qr 27031 . 2  |- Pell14QR  =  ( a  e.  ( NN 
\NN )  |->  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  a
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( a  x.  ( w ^ 2 ) ) )  =  1 ) } )
12 reex 8844 . . 3  |-  RR  e.  _V
1312rabex 4181 . 2  |-  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) }  e.  _V
1410, 11, 13fvmpt 5618 1  |-  ( D  e.  ( NN  \NN )  -> 
(Pell14QR `  D )  =  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  (
y  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   {crab 2560    \ cdif 3162   ` cfv 5271  (class class class)co 5874   RRcr 8752   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ^cexp 11120   sqrcsqr 11734  ◻NNcsquarenn 27024  Pell14QRcpell14qr 27027
This theorem is referenced by:  elpell14qr  27037  rmxyelqirr  27098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-pell14qr 27031
  Copyright terms: Public domain W3C validator