Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Unicode version

Theorem pell1qrgaplem 26917
Description: Lemma for pell1qrgap 26918. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 10613 . . . . . 6  |-  ( D  e.  NN  ->  D  e.  RR+ )
21ad2antrr 707 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR+ )
3 1rp 10608 . . . . . 6  |-  1  e.  RR+
43a1i 11 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR+ )
52, 4rpaddcld 10655 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  RR+ )
65rpsqrcld 12206 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR+ )
76rpred 10640 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR )
82rpsqrcld 12206 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR+ )
98rpred 10640 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR )
10 nn0re 10222 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
1110adantr 452 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  RR )
1211ad2antlr 708 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  RR )
13 nn0re 10222 . . . . 5  |-  ( B  e.  NN0  ->  B  e.  RR )
1413adantl 453 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  RR )
1514ad2antlr 708 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  RR )
169, 15remulcld 9108 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  B )  e.  RR )
172rpred 10640 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR )
18 1re 9082 . . . . . . . 8  |-  1  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR )
2015resqcld 11541 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  RR )
2119, 20resubcld 9457 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  e.  RR )
2217, 21remulcld 9108 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  e.  RR )
23 0re 9083 . . . . . . 7  |-  0  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  e.  RR )
2517, 24remulcld 9108 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  e.  RR )
2612resqcld 11541 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  RR )
27 sq1 11468 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827a1i 11 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  =  1 )
29 nnge1 10018 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  1  <_  B )
3029adantl 453 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  e.  NN )  ->  1  <_  B )
31 simplrl 737 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  ( A  +  ( ( sqr `  D
)  x.  B ) ) )
32 oveq1 6080 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
3332adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
34 sq0 11465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0 ^ 2 )  =  0
3533, 34syl6eq 2483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  0 )
3635oveq2d 6089 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  ( D  x.  0 ) )
372rpcnd 10642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  CC )
3837adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  D  e.  CC )
3938mul01d 9257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  0 )  =  0 )
4036, 39eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  0 )
4140oveq2d 6089 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( ( A ^ 2 )  - 
0 ) )
42 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
4312recnd 9106 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  CC )
4443sqcld 11513 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  CC )
4544adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  e.  CC )
4645subid1d 9392 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  0 )  =  ( A ^
2 ) )
4741, 42, 463eqtr3d 2475 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  =  ( A ^
2 ) )
4827, 47syl5req 2480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  =  ( 1 ^ 2 ) )
49 nn0ge0 10239 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  NN0  ->  0  <_  A )
5049adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  A )
5150ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  A )
52 0le1 9543 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
5352a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  1 )
54 sq11 11446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
5512, 51, 19, 53, 54syl22anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5655adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5748, 56mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  A  =  1 )
58 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  B  =  0 )
5958oveq2d 6089 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  ( ( sqr `  D )  x.  0 ) )
608rpcnd 10642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  CC )
6160adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( sqr `  D )  e.  CC )
6261mul01d 9257 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  0 )  =  0 )
6359, 62eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  0 )
6457, 63oveq12d 6091 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  ( 1  +  0 ) )
65 ax-1cn 9040 . . . . . . . . . . . . . 14  |-  1  e.  CC
6665addid1i 9245 . . . . . . . . . . . . 13  |-  ( 1  +  0 )  =  1
6764, 66syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  1 )
6831, 67breqtrd 4228 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  1 )
6918ltnri 9174 . . . . . . . . . . 11  |-  -.  1  <  1
70 pm2.24 103 . . . . . . . . . . 11  |-  ( 1  <  1  ->  ( -.  1  <  1  ->  1  <_  B )
)
7168, 69, 70ee10 1385 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <_  B )
72 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  NN0 )
73 elnn0 10215 . . . . . . . . . . 11  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
7472, 73sylib 189 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B  e.  NN  \/  B  =  0 ) )
7530, 71, 74mpjaodan 762 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  B )
76 nn0ge0 10239 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  0  <_  B )
7776adantl 453 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  B )
7877ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  B )
7919, 15, 53, 78le2sqd 11550 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( 1 ^ 2 )  <_ 
( B ^ 2 ) ) )
8075, 79mpbid 202 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  <_  ( B ^
2 ) )
8128, 80eqbrtrrd 4226 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  ( B ^ 2 ) )
8219, 20suble0d 9609 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  1  <_  ( B ^ 2 ) ) )
8381, 82mpbird 224 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  <_  0 )
8421, 24, 2lemul2d 10680 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  ( D  x.  ( 1  -  ( B ^ 2 ) ) )  <_  ( D  x.  0 ) ) )
8583, 84mpbid 202 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  <_  ( D  x.  0 ) )
8622, 25, 26, 85leadd2dd 9633 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) )  <_  ( ( A ^ 2 )  +  ( D  x.  0 ) ) )
875rpcnd 10642 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  CC )
8887sqsqrd 12233 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( D  + 
1 ) )
89 simprr 734 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
9089eqcomd 2440 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  =  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9190oveq2d 6089 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( D  +  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9215recnd 9106 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  CC )
9392sqcld 11513 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  CC )
9437, 93mulcld 9100 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
9537, 44, 94addsub12d 9426 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9619recnd 9106 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  CC )
9737, 96, 93subdid 9481 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  =  ( ( D  x.  1 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9837mulid1d 9097 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  1 )  =  D )
9998oveq1d 6088 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( D  x.  1 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )
10097, 99eqtr2d 2468 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  -  ( D  x.  ( B ^ 2 ) ) )  =  ( D  x.  (
1  -  ( B ^ 2 ) ) ) )
101100oveq2d 6089 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^
2 )  +  ( D  x.  ( 1  -  ( B ^
2 ) ) ) ) )
10295, 101eqtrd 2467 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) ) )
10391, 102eqtrd 2467 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10488, 103eqtrd 2467 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10537mul01d 9257 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  =  0 )
106105oveq2d 6089 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  0 ) )  =  ( ( A ^ 2 )  +  0 ) )
10744addid1d 9258 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  0 )  =  ( A ^
2 ) )
108106, 107eqtr2d 2468 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  =  ( ( A ^
2 )  +  ( D  x.  0 ) ) )
10986, 104, 1083brtr4d 4234 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  <_  ( A ^
2 ) )
1106rpge0d 10644 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  ( sqr `  ( D  +  1 ) ) )
1117, 12, 110, 51le2sqd 11550 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  <_  A  <->  ( ( sqr `  ( D  + 
1 ) ) ^
2 )  <_  ( A ^ 2 ) ) )
112109, 111mpbird 224 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  <_  A )
11360mulid1d 9097 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  =  ( sqr `  D
) )
11419, 15, 8lemul2d 10680 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( ( sqr `  D )  x.  1 )  <_  (
( sqr `  D
)  x.  B ) ) )
11575, 114mpbid 202 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  <_  ( ( sqr `  D )  x.  B
) )
116113, 115eqbrtrrd 4226 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  <_ 
( ( sqr `  D
)  x.  B ) )
1177, 9, 12, 16, 112, 116le2addd 9636 1  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283   NNcn 9992   2c2 10041   NN0cn0 10213   RR+crp 10604   ^cexp 11374   sqrcsqr 12030
This theorem is referenced by:  pell1qrgap  26918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033
  Copyright terms: Public domain W3C validator