Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrge1 Structured version   Unicode version

Theorem pell1qrge1 26924
Description: A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1qrge1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell1QR `  D ) )  -> 
1  <_  A )

Proof of Theorem pell1qrge1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1qr 26901 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  NN0  E. b  e. 
NN0  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
2 1re 9082 . . . . . . . . . 10  |-  1  e.  RR
32a1i 11 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  1  e.  RR )
4 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  a  e.  NN0 )
54nn0red 10267 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  a  e.  RR )
6 eldifi 3461 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( NN  \NN )  ->  D  e.  NN )
76ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  D  e.  NN )
87nnnn0d 10266 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  D  e.  NN0 )
98nn0red 10267 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  D  e.  RR )
108nn0ge0d 10269 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  D )
119, 10resqrcld 12212 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( sqr `  D )  e.  RR )
12 simplrr 738 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  b  e.  NN0 )
1312nn0red 10267 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  b  e.  RR )
1411, 13remulcld 9108 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( ( sqr `  D )  x.  b )  e.  RR )
155, 14readdcld 9107 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( a  +  ( ( sqr `  D )  x.  b
) )  e.  RR )
16 2nn0 10230 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
1716a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  2  e.  NN0 )
1812, 17nn0expcld 11537 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( b ^ 2 )  e. 
NN0 )
198, 18nn0mulcld 10271 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( D  x.  ( b ^ 2 ) )  e.  NN0 )
2019nn0ge0d 10269 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  ( D  x.  ( b ^ 2 ) ) )
2119nn0red 10267 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( D  x.  ( b ^ 2 ) )  e.  RR )
223, 21addge02d 9607 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( 0  <_  ( D  x.  ( b ^ 2 ) )  <->  1  <_  ( ( D  x.  (
b ^ 2 ) )  +  1 ) ) )
2320, 22mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  1  <_  ( ( D  x.  (
b ^ 2 ) )  +  1 ) )
24 sq1 11468 . . . . . . . . . . . 12  |-  ( 1 ^ 2 )  =  1
2524a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( 1 ^ 2 )  =  1 )
26 nn0cn 10223 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  a  e.  CC )
2726ad2antrl 709 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  a  e.  CC )
2827sqcld 11513 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  ( a ^
2 )  e.  CC )
296ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  D  e.  NN )
3029nncnd 10008 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  D  e.  CC )
31 nn0cn 10223 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  NN0  ->  b  e.  CC )
3231ad2antll 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  b  e.  CC )
3332sqcld 11513 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  ( b ^
2 )  e.  CC )
3430, 33mulcld 9100 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  ( D  x.  ( b ^ 2 ) )  e.  CC )
35 ax-1cn 9040 . . . . . . . . . . . . . . 15  |-  1  e.  CC
3635a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  1  e.  CC )
3728, 34, 36subaddd 9421 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  ( ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1  <->  ( ( D  x.  ( b ^
2 ) )  +  1 )  =  ( a ^ 2 ) ) )
3837biimpa 471 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( ( D  x.  ( b ^ 2 ) )  +  1 )  =  ( a ^ 2 ) )
3938eqcomd 2440 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( a ^ 2 )  =  ( ( D  x.  ( b ^ 2 ) )  +  1 ) )
4023, 25, 393brtr4d 4234 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( 1 ^ 2 )  <_ 
( a ^ 2 ) )
41 0le1 9543 . . . . . . . . . . . 12  |-  0  <_  1
4241a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  1 )
434nn0ge0d 10269 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  a )
443, 5, 42, 43le2sqd 11550 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( 1  <_  a  <->  ( 1 ^ 2 )  <_ 
( a ^ 2 ) ) )
4540, 44mpbird 224 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  1  <_  a )
469, 10sqrge0d 12215 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  ( sqr `  D ) )
4712nn0ge0d 10269 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  b )
4811, 13, 46, 47mulge0d 9595 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  0  <_  ( ( sqr `  D
)  x.  b ) )
495, 14addge01d 9606 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  ( 0  <_  ( ( sqr `  D )  x.  b
)  <->  a  <_  (
a  +  ( ( sqr `  D )  x.  b ) ) ) )
5048, 49mpbid 202 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  a  <_  ( a  +  ( ( sqr `  D )  x.  b ) ) )
513, 5, 15, 45, 50letrd 9219 . . . . . . . 8  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 )  ->  1  <_  ( a  +  ( ( sqr `  D )  x.  b ) ) )
5251adantrl 697 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
1  <_  ( a  +  ( ( sqr `  D )  x.  b
) ) )
53 simprl 733 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  ->  A  =  ( a  +  ( ( sqr `  D )  x.  b
) ) )
5452, 53breqtrrd 4230 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
1  <_  A )
5554ex 424 . . . . 5  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  ->  ( ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  1  <_  A ) )
5655rexlimdvva 2829 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR )  ->  ( E. a  e.  NN0  E. b  e. 
NN0  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  1  <_  A ) )
5756expimpd 587 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  e.  RR  /\  E. a  e.  NN0  E. b  e. 
NN0  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
1  <_  A )
)
581, 57sylbid 207 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  ->  1  <_  A ) )
5958imp 419 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell1QR `  D ) )  -> 
1  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    \ cdif 3309   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    <_ cle 9113    - cmin 9283   NNcn 9992   2c2 10041   NN0cn0 10213   ^cexp 11374   sqrcsqr 12030  ◻NNcsquarenn 26890  Pell1QRcpell1qr 26891
This theorem is referenced by:  elpell1qr2  26926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-pell1qr 26896
  Copyright terms: Public domain W3C validator