Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Unicode version

Theorem pellexlem5 27021
Description: Lemma for pellex 27023. Invoking fiphp3d 27005, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ZZ  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) )
Distinct variable group:    x, D, y, z

Proof of Theorem pellexlem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 27020 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ~~  NN )
2 fzfi 11050 . . . 4  |-  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  e.  Fin
3 diffi 7105 . . . 4  |-  ( (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  e. 
Fin  ->  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  e. 
Fin )
42, 3mp1i 11 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  e. 
Fin )
5 elopab 4288 . . . . 5  |-  ( a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  E. y E. z ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )
6 fveq2 5541 . . . . . . . . . . . 12  |-  ( a  =  <. y ,  z
>.  ->  ( 1st `  a
)  =  ( 1st `  <. y ,  z
>. ) )
76oveq1d 5889 . . . . . . . . . . 11  |-  ( a  =  <. y ,  z
>.  ->  ( ( 1st `  a ) ^ 2 )  =  ( ( 1st `  <. y ,  z >. ) ^ 2 ) )
8 fveq2 5541 . . . . . . . . . . . . 13  |-  ( a  =  <. y ,  z
>.  ->  ( 2nd `  a
)  =  ( 2nd `  <. y ,  z
>. ) )
98oveq1d 5889 . . . . . . . . . . . 12  |-  ( a  =  <. y ,  z
>.  ->  ( ( 2nd `  a ) ^ 2 )  =  ( ( 2nd `  <. y ,  z >. ) ^ 2 ) )
109oveq2d 5890 . . . . . . . . . . 11  |-  ( a  =  <. y ,  z
>.  ->  ( D  x.  ( ( 2nd `  a
) ^ 2 ) )  =  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) ) )
117, 10oveq12d 5892 . . . . . . . . . 10  |-  ( a  =  <. y ,  z
>.  ->  ( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  (
( 2nd `  a
) ^ 2 ) ) )  =  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) ) )
12 vex 2804 . . . . . . . . . . . . 13  |-  y  e. 
_V
13 vex 2804 . . . . . . . . . . . . 13  |-  z  e. 
_V
1412, 13op1st 6144 . . . . . . . . . . . 12  |-  ( 1st `  <. y ,  z
>. )  =  y
1514oveq1i 5884 . . . . . . . . . . 11  |-  ( ( 1st `  <. y ,  z >. ) ^ 2 )  =  ( y ^ 2 )
1612, 13op2nd 6145 . . . . . . . . . . . . 13  |-  ( 2nd `  <. y ,  z
>. )  =  z
1716oveq1i 5884 . . . . . . . . . . . 12  |-  ( ( 2nd `  <. y ,  z >. ) ^ 2 )  =  ( z ^ 2 )
1817oveq2i 5885 . . . . . . . . . . 11  |-  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) )  =  ( D  x.  ( z ^
2 ) )
1915, 18oveq12i 5886 . . . . . . . . . 10  |-  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) )  =  ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )
2011, 19syl6eq 2344 . . . . . . . . 9  |-  ( a  =  <. y ,  z
>.  ->  ( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  (
( 2nd `  a
) ^ 2 ) ) )  =  ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )
2120ad2antrl 708 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  =  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )
22 simprrl 740 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( y  e.  NN  /\  z  e.  NN ) )
23 simpl 443 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  ->  D  e.  NN )
24 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
2524ad2antll 709 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )
26 nnz 10061 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  ZZ )
2726ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  y  e.  ZZ )
28 zsqcl 11190 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
2927, 28syl 15 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( y ^ 2 )  e.  ZZ )
30 nnz 10061 . . . . . . . . . . . . . . 15  |-  ( D  e.  NN  ->  D  e.  ZZ )
3130ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  ZZ )
32 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  z  e.  NN )
3332nnzd 10132 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  z  e.  ZZ )
34 zsqcl 11190 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  ZZ )
3533, 34syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( z ^ 2 )  e.  ZZ )
3631, 35zmulcld 10139 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( D  x.  ( z ^ 2 ) )  e.  ZZ )
3729, 36zsubcld 10138 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ZZ )
38 1re 8853 . . . . . . . . . . . . . . 15  |-  1  e.  RR
39 2re 9831 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
40 nnre 9769 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  NN  ->  D  e.  RR )
4140ad2antrl 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  RR )
42 nnnn0 9988 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  NN  ->  D  e.  NN0 )
4342ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  NN0 )
4443nn0ge0d 10037 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  0  <_  D )
4541, 44resqrcld 11916 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( sqr `  D )  e.  RR )
46 remulcl 8838 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  RR  /\  ( sqr `  D )  e.  RR )  -> 
( 2  x.  ( sqr `  D ) )  e.  RR )
4739, 45, 46sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 2  x.  ( sqr `  D
) )  e.  RR )
48 readdcl 8836 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( 2  x.  ( sqr `  D ) )  e.  RR )  -> 
( 1  +  ( 2  x.  ( sqr `  D ) ) )  e.  RR )
4938, 47, 48sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR )
5049flcld 10946 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )
5150znegcld 10135 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )
5237zred 10133 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  RR )
5350zred 10133 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  RR )
54 nn0abscl 11813 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ZZ  ->  ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  e. 
NN0 )
5537, 54syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  NN0 )
5655nn0zd 10131 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  ZZ )
5756zred 10133 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  RR )
58 peano2re 9001 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR  ->  (
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 )  e.  RR )
5953, 58syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 )  e.  RR )
60 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
61 flltp1 10948 . . . . . . . . . . . . . . . 16  |-  ( ( 1  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  < 
( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 ) )
6249, 61syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  < 
( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 ) )
6357, 49, 59, 60, 62lttrd 8993 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) )
64 zleltp1 10084 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ )  -> 
( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <->  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) ) )
6556, 50, 64syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  <_ 
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) ) )
6663, 65mpbird 223 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
67 absle 11815 . . . . . . . . . . . . . 14  |-  ( ( ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  RR  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )  -> 
( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
6867biimpa 470 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  RR  /\  ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )  /\  ( abs `  ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  ->  ( -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  <_  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
6952, 53, 66, 68syl21anc 1181 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
70 elfz 10804 . . . . . . . . . . . . 13  |-  ( ( ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ZZ  /\  -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )  ->  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  <->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
7170biimpar 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  ZZ  /\  -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )  /\  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )  ->  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7237, 51, 50, 69, 71syl31anc 1185 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7322, 23, 25, 72syl12anc 1180 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7473adantlr 695 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
75 simprl 732 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 )
7675ad2antll 709 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 )
77 eldifsn 3762 . . . . . . . . 9  |-  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  <->  ( (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 ) )
7874, 76, 77sylanbrc 645 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
7921, 78eqeltrd 2370 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
8079ex 423 . . . . . 6  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
8180exlimdvv 1627 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. y E. z ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
825, 81syl5bi 208 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
8382imp 418 . . 3  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
841, 4, 83fiphp3d 27005 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )
85 eldif 3175 . . . . . 6  |-  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  <->  ( x  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  -.  x  e.  { 0 } ) )
86 elfzelz 10814 . . . . . . . 8  |-  ( x  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  ->  x  e.  ZZ )
87 simp2 956 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  ->  x  e.  ZZ )
88 elsn 3668 . . . . . . . . . . . . 13  |-  ( x  e.  { 0 }  <-> 
x  =  0 )
8988biimpri 197 . . . . . . . . . . . 12  |-  ( x  =  0  ->  x  e.  { 0 } )
9089necon3bi 2500 . . . . . . . . . . 11  |-  ( -.  x  e.  { 0 }  ->  x  =/=  0 )
91903ad2ant3 978 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  ->  x  =/=  0 )
9287, 91jca 518 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  -> 
( x  e.  ZZ  /\  x  =/=  0 ) )
93923exp 1150 . . . . . . . 8  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ZZ  ->  ( -.  x  e.  { 0 }  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) ) )
9486, 93syl5 28 . . . . . . 7  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  -> 
( -.  x  e. 
{ 0 }  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) ) )
9594imp3a 420 . . . . . 6  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  -.  x  e.  { 0 } )  ->  (
x  e.  ZZ  /\  x  =/=  0 ) ) )
9685, 95syl5bi 208 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } )  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) )
97 simp2l 981 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  x  e.  ZZ )
98 simp2r 982 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  x  =/=  0
)
99 nnex 9768 . . . . . . . . . . 11  |-  NN  e.  _V
10099, 99xpex 4817 . . . . . . . . . 10  |-  ( NN 
X.  NN )  e. 
_V
101 opabssxp 4778 . . . . . . . . . 10  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  C_  ( NN  X.  NN )
102 ssdomg 6923 . . . . . . . . . 10  |-  ( ( NN  X.  NN )  e.  _V  ->  ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  C_  ( NN  X.  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  ( NN 
X.  NN ) ) )
103100, 101, 102mp2 17 . . . . . . . . 9  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  ( NN 
X.  NN )
104 xpnnen 12503 . . . . . . . . 9  |-  ( NN 
X.  NN )  ~~  NN
105 domentr 6936 . . . . . . . . 9  |-  ( ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  NN )
106103, 104, 105mp2an 653 . . . . . . . 8  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  NN
107 ensym 6926 . . . . . . . . . 10  |-  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  NN 
~~  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x } )
1081073ad2ant3 978 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  NN  ~~  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x } )
109100, 101ssexi 4175 . . . . . . . . . 10  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  e.  _V
110 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  ( 1st `  a )  =  ( 1st `  b
) )
111110oveq1d 5889 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  (
( 1st `  a
) ^ 2 )  =  ( ( 1st `  b ) ^ 2 ) )
112 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  b  ->  ( 2nd `  a )  =  ( 2nd `  b
) )
113112oveq1d 5889 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  (
( 2nd `  a
) ^ 2 )  =  ( ( 2nd `  b ) ^ 2 ) )
114113oveq2d 5890 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  ( D  x.  ( ( 2nd `  a ) ^
2 ) )  =  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )
115111, 114oveq12d 5892 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
116115eqeq1d 2304 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  =  x  <->  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x ) )
117116elrab 2936 . . . . . . . . . . . . 13  |-  ( b  e.  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  <->  ( b  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  /\  (
( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x ) )
118 simprl 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
b  =  <. y ,  z >. )
119 simprrl 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( y  e.  NN  /\  z  e.  NN ) )
120 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  <. y ,  z
>.  ->  ( 1st `  b
)  =  ( 1st `  <. y ,  z
>. ) )
121120oveq1d 5889 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  <. y ,  z
>.  ->  ( ( 1st `  b ) ^ 2 )  =  ( ( 1st `  <. y ,  z >. ) ^ 2 ) )
122 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  =  <. y ,  z
>.  ->  ( 2nd `  b
)  =  ( 2nd `  <. y ,  z
>. ) )
123122oveq1d 5889 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  <. y ,  z
>.  ->  ( ( 2nd `  b ) ^ 2 )  =  ( ( 2nd `  <. y ,  z >. ) ^ 2 ) )
124123oveq2d 5890 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  <. y ,  z
>.  ->  ( D  x.  ( ( 2nd `  b
) ^ 2 ) )  =  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) ) )
125121, 124oveq12d 5892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  =  <. y ,  z
>.  ->  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) ) )
126125, 19syl6req 2345 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  <. y ,  z
>.  ->  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
127126ad2antrl 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
128 simplr 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  ( ( 2nd `  b ) ^ 2 ) ) )  =  x )
129127, 128eqtrd 2328 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x )
130118, 119, 129jca32 521 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) ) )
131130ex 423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( (
b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) ) ) )
1321312eximdv 1614 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( E. y E. z ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) ) ) )
133 elopab 4288 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )
134 elopab 4288 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  <->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) ) )
135132, 133, 1343imtr4g 261 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( b  e.  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ->  b  e.  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) } ) )
136135expimpd 586 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( ( ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x  /\  b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )  -> 
b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } ) )
137136ancomsd 440 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( ( b  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  /\  (
( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  b  e.  {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } ) )
138117, 137syl5bi 208 . . . . . . . . . . . 12  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( b  e.  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ->  b  e.  {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } ) )
139138ssrdv 3198 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  ->  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
1401393adant3 975 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
141 ssdomg 6923 . . . . . . . . . 10  |-  ( {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) }  e.  _V  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ->  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } ) )
142109, 140, 141mpsyl 59 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
143 endomtr 6935 . . . . . . . . 9  |-  ( ( NN  ~~  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  /\  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )  ->  NN 
~<_  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) } )
144108, 142, 143syl2anc 642 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  NN  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
145 sbth 6997 . . . . . . . 8  |-  ( ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~<_  NN  /\  NN  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )  ->  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN )
146106, 144, 145sylancr 644 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~~  NN )
14797, 98, 146jca32 521 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } 
~~  NN ) ) )
1481473exp 1150 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ZZ  /\  x  =/=  0 )  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) ) ) )
14996, 148syld 40 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } )  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) ) ) )
150149imp3a 420 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  /\  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } 
~~  NN ) ) ) )
151150reximdv2 2665 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  E. x  e.  ZZ  (
x  =/=  0  /\ 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) )
15284, 151mpd 14 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ZZ  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162    C_ wss 3165   {csn 3653   <.cop 3656   class class class wbr 4039   {copab 4092    X. cxp 4703   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137    ~~ cen 6876    ~<_ cdom 6877   Fincfn 6879   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   -ucneg 9054   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   QQcq 10332   ...cfz 10798   |_cfl 10940   ^cexp 11120   sqrcsqr 11734   abscabs 11735
This theorem is referenced by:  pellex  27023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-ico 10678  df-fz 10799  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-numer 12822  df-denom 12823
  Copyright terms: Public domain W3C validator