Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem6 Unicode version

Theorem pellexlem6 26919
Description: Lemma for pellex 26920. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Hypotheses
Ref Expression
pellex.ann  |-  ( ph  ->  A  e.  NN )
pellex.bnn  |-  ( ph  ->  B  e.  NN )
pellex.cz  |-  ( ph  ->  C  e.  ZZ )
pellex.dnn  |-  ( ph  ->  D  e.  NN )
pellex.irr  |-  ( ph  ->  -.  ( sqr `  D
)  e.  QQ )
pellex.enn  |-  ( ph  ->  E  e.  NN )
pellex.fnn  |-  ( ph  ->  F  e.  NN )
pellex.neq  |-  ( ph  ->  -.  ( A  =  E  /\  B  =  F ) )
pellex.cn0  |-  ( ph  ->  C  =/=  0 )
pellex.no1  |-  ( ph  ->  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  C )
pellex.no2  |-  ( ph  ->  ( ( E ^
2 )  -  ( D  x.  ( F ^ 2 ) ) )  =  C )
pellex.xcg  |-  ( ph  ->  ( A  mod  ( abs `  C ) )  =  ( E  mod  ( abs `  C ) ) )
pellex.ycg  |-  ( ph  ->  ( B  mod  ( abs `  C ) )  =  ( F  mod  ( abs `  C ) ) )
Assertion
Ref Expression
pellexlem6  |-  ( ph  ->  E. a  e.  NN  E. b  e.  NN  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )
Distinct variable groups:    a, b, A    B, a, b    C, a, b    D, a, b    E, a, b    F, a, b    ph, a, b

Proof of Theorem pellexlem6
StepHypRef Expression
1 pellex.ann . . . . . . . . 9  |-  ( ph  ->  A  e.  NN )
21nncnd 9762 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
3 pellex.enn . . . . . . . . 9  |-  ( ph  ->  E  e.  NN )
43nncnd 9762 . . . . . . . 8  |-  ( ph  ->  E  e.  CC )
52, 4mulcld 8855 . . . . . . 7  |-  ( ph  ->  ( A  x.  E
)  e.  CC )
6 pellex.dnn . . . . . . . . 9  |-  ( ph  ->  D  e.  NN )
76nncnd 9762 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
8 pellex.bnn . . . . . . . . . 10  |-  ( ph  ->  B  e.  NN )
98nncnd 9762 . . . . . . . . 9  |-  ( ph  ->  B  e.  CC )
10 pellex.fnn . . . . . . . . . 10  |-  ( ph  ->  F  e.  NN )
1110nncnd 9762 . . . . . . . . 9  |-  ( ph  ->  F  e.  CC )
129, 11mulcld 8855 . . . . . . . 8  |-  ( ph  ->  ( B  x.  F
)  e.  CC )
137, 12mulcld 8855 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( B  x.  F )
)  e.  CC )
145, 13subcld 9157 . . . . . 6  |-  ( ph  ->  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  e.  CC )
15 pellex.cz . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
1615zcnd 10118 . . . . . 6  |-  ( ph  ->  C  e.  CC )
17 pellex.cn0 . . . . . 6  |-  ( ph  ->  C  =/=  0 )
1814, 16, 17absdivd 11937 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) )  =  ( ( abs `  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) )  /  ( abs `  C ) ) )
195, 13negsubd 9163 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  E )  +  -u ( D  x.  ( B  x.  F )
) )  =  ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )
2019eqcomd 2288 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  =  ( ( A  x.  E )  + 
-u ( D  x.  ( B  x.  F
) ) ) )
2120oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  mod  ( abs `  C ) )  =  ( ( ( A  x.  E )  +  -u ( D  x.  ( B  x.  F
) ) )  mod  ( abs `  C
) ) )
221nnred 9761 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
233nnred 9761 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR )
2422, 23remulcld 8863 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  E
)  e.  RR )
256nnred 9761 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  RR )
268nnred 9761 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
2710nnred 9761 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  RR )
2826, 27remulcld 8863 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  F
)  e.  RR )
2925, 28remulcld 8863 . . . . . . . . . 10  |-  ( ph  ->  ( D  x.  ( B  x.  F )
)  e.  RR )
3029renegcld 9210 . . . . . . . . . 10  |-  ( ph  -> 
-u ( D  x.  ( B  x.  F
) )  e.  RR )
3116, 17absrpcld 11930 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  C
)  e.  RR+ )
323nnzd 10116 . . . . . . . . . . . 12  |-  ( ph  ->  E  e.  ZZ )
33 pellex.xcg . . . . . . . . . . . 12  |-  ( ph  ->  ( A  mod  ( abs `  C ) )  =  ( E  mod  ( abs `  C ) ) )
34 modmul1 11002 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  E  e.  RR )  /\  ( E  e.  ZZ  /\  ( abs `  C )  e.  RR+ )  /\  ( A  mod  ( abs `  C ) )  =  ( E  mod  ( abs `  C
) ) )  -> 
( ( A  x.  E )  mod  ( abs `  C ) )  =  ( ( E  x.  E )  mod  ( abs `  C
) ) )
3522, 23, 32, 31, 33, 34syl221anc 1193 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  E )  mod  ( abs `  C ) )  =  ( ( E  x.  E )  mod  ( abs `  C
) ) )
364sqcld 11243 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
3711sqcld 11243 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
387, 37mulcld 8855 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  x.  ( F ^ 2 ) )  e.  CC )
3936, 38npcand 9161 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) )  +  ( D  x.  ( F ^
2 ) ) )  =  ( E ^
2 ) )
404sqvald 11242 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( E ^ 2 )  =  ( E  x.  E ) )
4139, 40eqtr2d 2316 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E  x.  E
)  =  ( ( ( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) )  +  ( D  x.  ( F ^ 2 ) ) ) )
4241oveq1d 5873 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E  x.  E )  mod  ( abs `  C ) )  =  ( ( ( ( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) )  +  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) ) )
4323resqcld 11271 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
4427resqcld 11271 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
4525, 44remulcld 8863 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  ( F ^ 2 ) )  e.  RR )
4643, 45resubcld 9211 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  -  ( D  x.  ( F ^ 2 ) ) )  e.  RR )
47 0re 8838 . . . . . . . . . . . . . 14  |-  0  e.  RR
4847a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  RR )
4916abscld 11918 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( abs `  C
)  e.  RR )
5049recnd 8861 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( abs `  C
)  e.  CC )
5116, 17absne0d 11929 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( abs `  C
)  =/=  0 )
5250, 51dividd 9534 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( abs `  C
)  /  ( abs `  C ) )  =  1 )
53 1z 10053 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ZZ
5453a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  ZZ )
5552, 54eqeltrd 2357 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( abs `  C
)  /  ( abs `  C ) )  e.  ZZ )
56 mod0 10978 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  C
)  e.  RR  /\  ( abs `  C )  e.  RR+ )  ->  (
( ( abs `  C
)  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  C )  /  ( abs `  C ) )  e.  ZZ ) )
5749, 31, 56syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( abs `  C )  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  C )  / 
( abs `  C
) )  e.  ZZ ) )
5855, 57mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  C
)  mod  ( abs `  C ) )  =  0 )
5915zred 10117 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  RR )
60 absmod0 11788 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  RR  /\  ( abs `  C )  e.  RR+ )  ->  (
( C  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  C )  mod  ( abs `  C
) )  =  0 ) )
6159, 31, 60syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C  mod  ( abs `  C ) )  =  0  <->  (
( abs `  C
)  mod  ( abs `  C ) )  =  0 ) )
6258, 61mpbird 223 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  mod  ( abs `  C ) )  =  0 )
63 pellex.no2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( E ^
2 )  -  ( D  x.  ( F ^ 2 ) ) )  =  C )
6463oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) )  =  ( C  mod  ( abs `  C ) ) )
65 0mod 10995 . . . . . . . . . . . . . . 15  |-  ( ( abs `  C )  e.  RR+  ->  ( 0  mod  ( abs `  C
) )  =  0 )
6631, 65syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0  mod  ( abs `  C ) )  =  0 )
6762, 64, 663eqtr4d 2325 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) )  =  ( 0  mod  ( abs `  C ) ) )
68 modadd1 11001 . . . . . . . . . . . . 13  |-  ( ( ( ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) )  e.  RR  /\  0  e.  RR )  /\  ( ( D  x.  ( F ^ 2 ) )  e.  RR  /\  ( abs `  C )  e.  RR+ )  /\  (
( ( E ^
2 )  -  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) )  =  ( 0  mod  ( abs `  C ) ) )  ->  ( (
( ( E ^
2 )  -  ( D  x.  ( F ^ 2 ) ) )  +  ( D  x.  ( F ^
2 ) ) )  mod  ( abs `  C
) )  =  ( ( 0  +  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) ) )
6946, 48, 45, 31, 67, 68syl221anc 1193 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) )  +  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) )  =  ( ( 0  +  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) ) )
7038addid2d 9013 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0  +  ( D  x.  ( F ^ 2 ) ) )  =  ( D  x.  ( F ^
2 ) ) )
7111sqvald 11242 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F ^ 2 )  =  ( F  x.  F ) )
7271oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  ( F ^ 2 ) )  =  ( D  x.  ( F  x.  F
) ) )
737, 11, 11mul12d 9021 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  ( F  x.  F )
)  =  ( F  x.  ( D  x.  F ) ) )
7470, 72, 733eqtrd 2319 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  +  ( D  x.  ( F ^ 2 ) ) )  =  ( F  x.  ( D  x.  F ) ) )
7574oveq1d 5873 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 0  +  ( D  x.  ( F ^ 2 ) ) )  mod  ( abs `  C ) )  =  ( ( F  x.  ( D  x.  F
) )  mod  ( abs `  C ) ) )
7642, 69, 753eqtrd 2319 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E  x.  E )  mod  ( abs `  C ) )  =  ( ( F  x.  ( D  x.  F ) )  mod  ( abs `  C
) ) )
776nnzd 10116 . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  ZZ )
7810nnzd 10116 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ZZ )
7977, 78zmulcld 10123 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D  x.  F
)  e.  ZZ )
80 pellex.ycg . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  mod  ( abs `  C ) )  =  ( F  mod  ( abs `  C ) ) )
8180eqcomd 2288 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  mod  ( abs `  C ) )  =  ( B  mod  ( abs `  C ) ) )
82 modmul1 11002 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  RR  /\  B  e.  RR )  /\  ( ( D  x.  F )  e.  ZZ  /\  ( abs `  C )  e.  RR+ )  /\  ( F  mod  ( abs `  C ) )  =  ( B  mod  ( abs `  C
) ) )  -> 
( ( F  x.  ( D  x.  F
) )  mod  ( abs `  C ) )  =  ( ( B  x.  ( D  x.  F ) )  mod  ( abs `  C
) ) )
8327, 26, 79, 31, 81, 82syl221anc 1193 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F  x.  ( D  x.  F
) )  mod  ( abs `  C ) )  =  ( ( B  x.  ( D  x.  F ) )  mod  ( abs `  C
) ) )
849, 7, 11mul12d 9021 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  x.  ( D  x.  F )
)  =  ( D  x.  ( B  x.  F ) ) )
8584oveq1d 5873 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  x.  ( D  x.  F
) )  mod  ( abs `  C ) )  =  ( ( D  x.  ( B  x.  F ) )  mod  ( abs `  C
) ) )
8683, 85eqtrd 2315 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  x.  ( D  x.  F
) )  mod  ( abs `  C ) )  =  ( ( D  x.  ( B  x.  F ) )  mod  ( abs `  C
) ) )
8735, 76, 863eqtrd 2319 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  E )  mod  ( abs `  C ) )  =  ( ( D  x.  ( B  x.  F ) )  mod  ( abs `  C
) ) )
88 modadd1 11001 . . . . . . . . . 10  |-  ( ( ( ( A  x.  E )  e.  RR  /\  ( D  x.  ( B  x.  F )
)  e.  RR )  /\  ( -u ( D  x.  ( B  x.  F ) )  e.  RR  /\  ( abs `  C )  e.  RR+ )  /\  ( ( A  x.  E )  mod  ( abs `  C
) )  =  ( ( D  x.  ( B  x.  F )
)  mod  ( abs `  C ) ) )  ->  ( ( ( A  x.  E )  +  -u ( D  x.  ( B  x.  F
) ) )  mod  ( abs `  C
) )  =  ( ( ( D  x.  ( B  x.  F
) )  +  -u ( D  x.  ( B  x.  F )
) )  mod  ( abs `  C ) ) )
8924, 29, 30, 31, 87, 88syl221anc 1193 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  x.  E )  + 
-u ( D  x.  ( B  x.  F
) ) )  mod  ( abs `  C
) )  =  ( ( ( D  x.  ( B  x.  F
) )  +  -u ( D  x.  ( B  x.  F )
) )  mod  ( abs `  C ) ) )
9013negidd 9147 . . . . . . . . . 10  |-  ( ph  ->  ( ( D  x.  ( B  x.  F
) )  +  -u ( D  x.  ( B  x.  F )
) )  =  0 )
9190oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( D  x.  ( B  x.  F ) )  + 
-u ( D  x.  ( B  x.  F
) ) )  mod  ( abs `  C
) )  =  ( 0  mod  ( abs `  C ) ) )
9221, 89, 913eqtrd 2319 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  mod  ( abs `  C ) )  =  ( 0  mod  ( abs `  C
) ) )
9392, 66eqtrd 2315 . . . . . . 7  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  mod  ( abs `  C ) )  =  0 )
9424, 29resubcld 9211 . . . . . . . 8  |-  ( ph  ->  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  e.  RR )
95 absmod0 11788 . . . . . . . 8  |-  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  e.  RR  /\  ( abs `  C )  e.  RR+ )  ->  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  mod  ( abs `  C
) )  =  0  <-> 
( ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  mod  ( abs `  C ) )  =  0 ) )
9694, 31, 95syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  mod  ( abs `  C
) )  =  0  <-> 
( ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  mod  ( abs `  C ) )  =  0 ) )
9793, 96mpbid 201 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  mod  ( abs `  C ) )  =  0 )
9814abscld 11918 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  e.  RR )
99 mod0 10978 . . . . . . 7  |-  ( ( ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  e.  RR  /\  ( abs `  C )  e.  RR+ )  ->  (
( ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) )  /  ( abs `  C ) )  e.  ZZ ) )
10098, 31, 99syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( ( abs `  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) )  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) )  /  ( abs `  C ) )  e.  ZZ ) )
10197, 100mpbid 201 . . . . 5  |-  ( ph  ->  ( ( abs `  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  /  ( abs `  C ) )  e.  ZZ )
10218, 101eqeltrd 2357 . . . 4  |-  ( ph  ->  ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) )  e.  ZZ )
10394, 59, 17redivcld 9588 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
)  e.  RR )
104 absz 11796 . . . . 5  |-  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C )  e.  RR  ->  ( (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C )  e.  ZZ  <->  ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) )  e.  ZZ ) )
105103, 104syl 15 . . . 4  |-  ( ph  ->  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  /  C )  e.  ZZ  <->  ( abs `  ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  /  C ) )  e.  ZZ ) )
106102, 105mpbird 223 . . 3  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
)  e.  ZZ )
107 0lt1 9296 . . . . . . . 8  |-  0  <  1
108 1re 8837 . . . . . . . . 9  |-  1  e.  RR
10947, 108ltnlei 8939 . . . . . . . 8  |-  ( 0  <  1  <->  -.  1  <_  0 )
110107, 109mpbi 199 . . . . . . 7  |-  -.  1  <_  0
1119, 4mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  x.  E
)  e.  CC )
1122, 11mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  x.  F
)  e.  CC )
113111, 112subcld 9157 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  x.  E )  -  ( A  x.  F )
)  e.  CC )
114113, 16, 17divcld 9536 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
)  e.  CC )
115114abscld 11918 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) )  e.  RR )
116115resqcld 11271 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 )  e.  RR )
1176nnnn0d 10018 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  NN0 )
118117nn0ge0d 10021 . . . . . . . . . 10  |-  ( ph  ->  0  <_  D )
119115sqge0d 11272 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F ) )  /  C ) ) ^
2 ) )
12025, 116, 118, 119mulge0d 9349 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( D  x.  ( ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) )
12125, 116remulcld 8863 . . . . . . . . . 10  |-  ( ph  ->  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) )  e.  RR )
12248, 121suble0d 9363 . . . . . . . . 9  |-  ( ph  ->  ( ( 0  -  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) )  <_  0  <->  0  <_  ( D  x.  ( ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) ) )
123120, 122mpbird 223 . . . . . . . 8  |-  ( ph  ->  ( 0  -  ( D  x.  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F ) )  /  C ) ) ^
2 ) ) )  <_  0 )
124 breq1 4026 . . . . . . . 8  |-  ( 1  =  ( 0  -  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) )  ->  (
1  <_  0  <->  ( 0  -  ( D  x.  ( ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) )  <_  0
) )
125123, 124syl5ibrcom 213 . . . . . . 7  |-  ( ph  ->  ( 1  =  ( 0  -  ( D  x.  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
) ) ^ 2 ) ) )  -> 
1  <_  0 ) )
126110, 125mtoi 169 . . . . . 6  |-  ( ph  ->  -.  1  =  ( 0  -  ( D  x.  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
) ) ^ 2 ) ) ) )
127 absresq 11787 . . . . . . . . . . . 12  |-  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C )  e.  RR  ->  ( ( abs `  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  /  C ) ) ^
2 )  =  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
) ^ 2 ) )
128103, 127syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) ) ^ 2 )  =  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  /  C ) ^ 2 ) )
12914, 16, 17sqdivd 11258 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  /  C ) ^ 2 )  =  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) ^ 2 )  / 
( C ^ 2 ) ) )
13014sqvald 11242 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) ^ 2 )  =  ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) ) )
131130oveq1d 5873 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) ) ^
2 )  /  ( C ^ 2 ) )  =  ( ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) )  / 
( C ^ 2 ) ) )
132128, 129, 1313eqtrd 2319 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) ) ^ 2 )  =  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) )  /  ( C ^ 2 ) ) )
13326, 23remulcld 8863 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  x.  E
)  e.  RR )
13422, 27remulcld 8863 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  x.  F
)  e.  RR )
135133, 134resubcld 9211 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  x.  E )  -  ( A  x.  F )
)  e.  RR )
136135, 59, 17redivcld 9588 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
)  e.  RR )
137 absresq 11787 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  x.  E )  -  ( A  x.  F )
)  /  C )  e.  RR  ->  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 )  =  ( ( ( ( B  x.  E
)  -  ( A  x.  F ) )  /  C ) ^
2 ) )
138136, 137syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 )  =  ( ( ( ( B  x.  E
)  -  ( A  x.  F ) )  /  C ) ^
2 ) )
139113, 16, 17sqdivd 11258 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( B  x.  E )  -  ( A  x.  F ) )  /  C ) ^ 2 )  =  ( ( ( ( B  x.  E )  -  ( A  x.  F )
) ^ 2 )  /  ( C ^
2 ) ) )
140138, 139eqtrd 2315 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 )  =  ( ( ( ( B  x.  E
)  -  ( A  x.  F ) ) ^ 2 )  / 
( C ^ 2 ) ) )
141140oveq2d 5874 . . . . . . . . . . 11  |-  ( ph  ->  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) )  =  ( D  x.  ( ( ( ( B  x.  E
)  -  ( A  x.  F ) ) ^ 2 )  / 
( C ^ 2 ) ) ) )
142113sqcld 11243 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) ) ^ 2 )  e.  CC )
14316sqcld 11243 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
144 sqne0 11170 . . . . . . . . . . . . . 14  |-  ( C  e.  CC  ->  (
( C ^ 2 )  =/=  0  <->  C  =/=  0 ) )
14516, 144syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C ^
2 )  =/=  0  <->  C  =/=  0 ) )
14617, 145mpbird 223 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  =/=  0 )
1477, 142, 143, 146divassd 9571 . . . . . . . . . . 11  |-  ( ph  ->  ( ( D  x.  ( ( ( B  x.  E )  -  ( A  x.  F
) ) ^ 2 ) )  /  ( C ^ 2 ) )  =  ( D  x.  ( ( ( ( B  x.  E )  -  ( A  x.  F ) ) ^
2 )  /  ( C ^ 2 ) ) ) )
148113sqvald 11242 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) ) ^ 2 )  =  ( ( ( B  x.  E
)  -  ( A  x.  F ) )  x.  ( ( B  x.  E )  -  ( A  x.  F
) ) ) )
149148oveq2d 5874 . . . . . . . . . . . 12  |-  ( ph  ->  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
) ^ 2 ) )  =  ( D  x.  ( ( ( B  x.  E )  -  ( A  x.  F ) )  x.  ( ( B  x.  E )  -  ( A  x.  F )
) ) ) )
150149oveq1d 5873 . . . . . . . . . . 11  |-  ( ph  ->  ( ( D  x.  ( ( ( B  x.  E )  -  ( A  x.  F
) ) ^ 2 ) )  /  ( C ^ 2 ) )  =  ( ( D  x.  ( ( ( B  x.  E )  -  ( A  x.  F ) )  x.  ( ( B  x.  E )  -  ( A  x.  F )
) ) )  / 
( C ^ 2 ) ) )
151141, 147, 1503eqtr2d 2321 . . . . . . . . . 10  |-  ( ph  ->  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) )  =  ( ( D  x.  ( ( ( B  x.  E
)  -  ( A  x.  F ) )  x.  ( ( B  x.  E )  -  ( A  x.  F
) ) ) )  /  ( C ^
2 ) ) )
152132, 151oveq12d 5876 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
) ) ^ 2 )  -  ( D  x.  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
) ) ^ 2 ) ) )  =  ( ( ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) )  / 
( C ^ 2 ) )  -  (
( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) )  /  ( C ^ 2 ) ) ) )
15314, 14mulcld 8855 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  x.  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  e.  CC )
154113, 113mulcld 8855 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  x.  (
( B  x.  E
)  -  ( A  x.  F ) ) )  e.  CC )
1557, 154mulcld 8855 . . . . . . . . . 10  |-  ( ph  ->  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) )  e.  CC )
156153, 155, 143, 146divsubdird 9575 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) )  -  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) ) )  /  ( C ^ 2 ) )  =  ( ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) )  / 
( C ^ 2 ) )  -  (
( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) )  /  ( C ^ 2 ) ) ) )
1575, 13, 5, 13mulsubd 9238 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  x.  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) ) )  =  ( ( ( ( A  x.  E )  x.  ( A  x.  E )
)  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F
) ) ) )  -  ( ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F
) ) )  +  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F ) ) ) ) ) )
158111, 112, 111, 112mulsubd 9238 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  x.  (
( B  x.  E
)  -  ( A  x.  F ) ) )  =  ( ( ( ( B  x.  E )  x.  ( B  x.  E )
)  +  ( ( A  x.  F )  x.  ( A  x.  F ) ) )  -  ( ( ( B  x.  E )  x.  ( A  x.  F ) )  +  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) )
159158oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) )  =  ( D  x.  ( ( ( ( B  x.  E
)  x.  ( B  x.  E ) )  +  ( ( A  x.  F )  x.  ( A  x.  F
) ) )  -  ( ( ( B  x.  E )  x.  ( A  x.  F
) )  +  ( ( B  x.  E
)  x.  ( A  x.  F ) ) ) ) ) )
160111, 111mulcld 8855 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  x.  E )  x.  ( B  x.  E )
)  e.  CC )
161112, 112mulcld 8855 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  x.  F )  x.  ( A  x.  F )
)  e.  CC )
162160, 161addcld 8854 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( B  x.  E )  x.  ( B  x.  E
) )  +  ( ( A  x.  F
)  x.  ( A  x.  F ) ) )  e.  CC )
163111, 112mulcld 8855 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  x.  E )  x.  ( A  x.  F )
)  e.  CC )
164163, 163addcld 8854 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( B  x.  E )  x.  ( A  x.  F
) )  +  ( ( B  x.  E
)  x.  ( A  x.  F ) ) )  e.  CC )
1657, 162, 164subdid 9235 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D  x.  (
( ( ( B  x.  E )  x.  ( B  x.  E
) )  +  ( ( A  x.  F
)  x.  ( A  x.  F ) ) )  -  ( ( ( B  x.  E
)  x.  ( A  x.  F ) )  +  ( ( B  x.  E )  x.  ( A  x.  F
) ) ) ) )  =  ( ( D  x.  ( ( ( B  x.  E
)  x.  ( B  x.  E ) )  +  ( ( A  x.  F )  x.  ( A  x.  F
) ) ) )  -  ( D  x.  ( ( ( B  x.  E )  x.  ( A  x.  F
) )  +  ( ( B  x.  E
)  x.  ( A  x.  F ) ) ) ) ) )
1667, 160, 161adddid 8859 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  (
( ( B  x.  E )  x.  ( B  x.  E )
)  +  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  =  ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F )
) ) ) )
1677, 163, 163adddid 8859 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  (
( ( B  x.  E )  x.  ( A  x.  F )
)  +  ( ( B  x.  E )  x.  ( A  x.  F ) ) ) )  =  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) )
168166, 167oveq12d 5876 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( D  x.  ( ( ( B  x.  E )  x.  ( B  x.  E
) )  +  ( ( A  x.  F
)  x.  ( A  x.  F ) ) ) )  -  ( D  x.  ( (
( B  x.  E
)  x.  ( A  x.  F ) )  +  ( ( B  x.  E )  x.  ( A  x.  F
) ) ) ) )  =  ( ( ( D  x.  (
( B  x.  E
)  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F
) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F
) ) )  +  ( D  x.  (
( B  x.  E
)  x.  ( A  x.  F ) ) ) ) ) )
169159, 165, 1683eqtrd 2319 . . . . . . . . . . . 12  |-  ( ph  ->  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) )  =  ( ( ( D  x.  (
( B  x.  E
)  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F
) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F
) ) )  +  ( D  x.  (
( B  x.  E
)  x.  ( A  x.  F ) ) ) ) ) )
170157, 169oveq12d 5876 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) ) )  -  ( D  x.  ( ( ( B  x.  E )  -  ( A  x.  F ) )  x.  ( ( B  x.  E )  -  ( A  x.  F )
) ) ) )  =  ( ( ( ( ( A  x.  E )  x.  ( A  x.  E )
)  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F
) ) ) )  -  ( ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F
) ) )  +  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F ) ) ) ) )  -  (
( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) ) ) )
171170oveq1d 5873 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) )  -  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) ) )  /  ( C ^ 2 ) )  =  ( ( ( ( ( ( A  x.  E )  x.  ( A  x.  E
) )  +  ( ( D  x.  ( B  x.  F )
)  x.  ( D  x.  ( B  x.  F ) ) ) )  -  ( ( ( A  x.  E
)  x.  ( D  x.  ( B  x.  F ) ) )  +  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F )
) ) ) )  -  ( ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F )
) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) ) ) ) )  / 
( C ^ 2 ) ) )
1725, 13mulcomd 8856 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F ) ) )  =  ( ( D  x.  ( B  x.  F ) )  x.  ( A  x.  E
) ) )
1737, 12, 5mulassd 8858 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( D  x.  ( B  x.  F
) )  x.  ( A  x.  E )
)  =  ( D  x.  ( ( B  x.  F )  x.  ( A  x.  E
) ) ) )
1742, 4mulcomd 8856 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A  x.  E
)  =  ( E  x.  A ) )
175174oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( B  x.  F )  x.  ( A  x.  E )
)  =  ( ( B  x.  F )  x.  ( E  x.  A ) ) )
1769, 11, 4, 2mul4d 9024 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( B  x.  F )  x.  ( E  x.  A )
)  =  ( ( B  x.  E )  x.  ( F  x.  A ) ) )
17711, 2mulcomd 8856 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F  x.  A
)  =  ( A  x.  F ) )
178177oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( B  x.  E )  x.  ( F  x.  A )
)  =  ( ( B  x.  E )  x.  ( A  x.  F ) ) )
179175, 176, 1783eqtrd 2319 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( B  x.  F )  x.  ( A  x.  E )
)  =  ( ( B  x.  E )  x.  ( A  x.  F ) ) )
180179oveq2d 5874 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D  x.  (
( B  x.  F
)  x.  ( A  x.  E ) ) )  =  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F
) ) ) )
181172, 173, 1803eqtrd 2319 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F ) ) )  =  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) )
182181, 181oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F )
) )  +  ( ( A  x.  E
)  x.  ( D  x.  ( B  x.  F ) ) ) )  =  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) )
183182oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  x.  E )  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F
) )  x.  ( D  x.  ( B  x.  F ) ) ) )  -  ( ( ( A  x.  E
)  x.  ( D  x.  ( B  x.  F ) ) )  +  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F )
) ) ) )  =  ( ( ( ( A  x.  E
)  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F )
) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) ) ) ) )
184183oveq1d 5873 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( A  x.  E
)  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F )
) ) )  -  ( ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F )
) )  +  ( ( A  x.  E
)  x.  ( D  x.  ( B  x.  F ) ) ) ) )  -  (
( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) ) )  =  ( ( ( ( ( A  x.  E )  x.  ( A  x.  E
) )  +  ( ( D  x.  ( B  x.  F )
)  x.  ( D  x.  ( B  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) )  -  ( ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F )
) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) ) ) ) ) )
1855, 5mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  x.  E )  x.  ( A  x.  E )
)  e.  CC )
18613, 13mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( D  x.  ( B  x.  F
) )  x.  ( D  x.  ( B  x.  F ) ) )  e.  CC )
187185, 186addcld 8854 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  x.  E )  x.  ( A  x.  E
) )  +  ( ( D  x.  ( B  x.  F )
)  x.  ( D  x.  ( B  x.  F ) ) ) )  e.  CC )
1887, 160mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  (
( B  x.  E
)  x.  ( B  x.  E ) ) )  e.  CC )
1897, 161mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  (
( A  x.  F
)  x.  ( A  x.  F ) ) )  e.  CC )
190188, 189addcld 8854 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  e.  CC )
1917, 163mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  x.  (
( B  x.  E
)  x.  ( A  x.  F ) ) )  e.  CC )
192191, 191addcld 8854 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) ) )  e.  CC )
193187, 190, 192nnncan2d 9192 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( A  x.  E
)  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F )
) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) ) ) )  -  (
( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) ) )  =  ( ( ( ( A  x.  E )  x.  ( A  x.  E )
)  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F
) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E
) ) )  +  ( D  x.  (
( A  x.  F
)  x.  ( A  x.  F ) ) ) ) ) )
194185, 186, 188, 189addsub4d 9204 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  x.  E )  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F
) )  x.  ( D  x.  ( B  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F )
) ) ) )  =  ( ( ( ( A  x.  E
)  x.  ( A  x.  E ) )  -  ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) ) )  +  ( ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F )
) )  -  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F
) ) ) ) ) )
1955sqvald 11242 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  x.  E ) ^ 2 )  =  ( ( A  x.  E )  x.  ( A  x.  E ) ) )
196111sqvald 11242 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( B  x.  E ) ^ 2 )  =  ( ( B  x.  E )  x.  ( B  x.  E ) ) )
197196oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  x.  (
( B  x.  E
) ^ 2 ) )  =  ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E
) ) ) )
198195, 197oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  x.  E ) ^
2 )  -  ( D  x.  ( ( B  x.  E ) ^ 2 ) ) )  =  ( ( ( A  x.  E
)  x.  ( A  x.  E ) )  -  ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) ) ) )
19913sqvald 11242 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( D  x.  ( B  x.  F
) ) ^ 2 )  =  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F
) ) ) )
200112sqvald 11242 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  x.  F ) ^ 2 )  =  ( ( A  x.  F )  x.  ( A  x.  F ) ) )
201200oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  x.  (
( A  x.  F
) ^ 2 ) )  =  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F
) ) ) )
202199, 201oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( D  x.  ( B  x.  F ) ) ^
2 )  -  ( D  x.  ( ( A  x.  F ) ^ 2 ) ) )  =  ( ( ( D  x.  ( B  x.  F )
)  x.  ( D  x.  ( B  x.  F ) ) )  -  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F )
) ) ) )
203198, 202oveq12d 5876 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  x.  E ) ^ 2 )  -  ( D  x.  (
( B  x.  E
) ^ 2 ) ) )  +  ( ( ( D  x.  ( B  x.  F
) ) ^ 2 )  -  ( D  x.  ( ( A  x.  F ) ^
2 ) ) ) )  =  ( ( ( ( A  x.  E )  x.  ( A  x.  E )
)  -  ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E
) ) ) )  +  ( ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F
) ) )  -  ( D  x.  (
( A  x.  F
)  x.  ( A  x.  F ) ) ) ) ) )
2042, 4sqmuld 11257 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  x.  E ) ^ 2 )  =  ( ( A ^ 2 )  x.  ( E ^
2 ) ) )
2059, 4sqmuld 11257 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( B  x.  E ) ^ 2 )  =  ( ( B ^ 2 )  x.  ( E ^
2 ) ) )
206205oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D  x.  (
( B  x.  E
) ^ 2 ) )  =  ( D  x.  ( ( B ^ 2 )  x.  ( E ^ 2 ) ) ) )
2079sqcld 11243 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
2087, 207, 36mulassd 8858 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( D  x.  ( B ^ 2 ) )  x.  ( E ^ 2 ) )  =  ( D  x.  ( ( B ^
2 )  x.  ( E ^ 2 ) ) ) )
209206, 208eqtr4d 2318 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D  x.  (
( B  x.  E
) ^ 2 ) )  =  ( ( D  x.  ( B ^ 2 ) )  x.  ( E ^
2 ) ) )
210204, 209oveq12d 5876 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( A  x.  E ) ^
2 )  -  ( D  x.  ( ( B  x.  E ) ^ 2 ) ) )  =  ( ( ( A ^ 2 )  x.  ( E ^ 2 ) )  -  ( ( D  x.  ( B ^
2 ) )  x.  ( E ^ 2 ) ) ) )
2117sqvald 11242 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D ^ 2 )  =  ( D  x.  D ) )
2129, 11sqmuld 11257 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( B  x.  F ) ^ 2 )  =  ( ( B ^ 2 )  x.  ( F ^
2 ) ) )
213211, 212oveq12d 5876 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( D ^
2 )  x.  (
( B  x.  F
) ^ 2 ) )  =  ( ( D  x.  D )  x.  ( ( B ^ 2 )  x.  ( F ^ 2 ) ) ) )
2147, 12sqmuld 11257 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( D  x.  ( B  x.  F
) ) ^ 2 )  =  ( ( D ^ 2 )  x.  ( ( B  x.  F ) ^
2 ) ) )
2157, 7mulcld 8855 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D  x.  D
)  e.  CC )
216215, 207, 37mulassd 8858 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( D  x.  D )  x.  ( B ^ 2 ) )  x.  ( F ^ 2 ) )  =  ( ( D  x.  D )  x.  ( ( B ^
2 )  x.  ( F ^ 2 ) ) ) )
217213, 214, 2163eqtr4d 2325 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( D  x.  ( B  x.  F
) ) ^ 2 )  =  ( ( ( D  x.  D
)  x.  ( B ^ 2 ) )  x.  ( F ^
2 ) ) )
2182, 11sqmuld 11257 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( A  x.  F ) ^ 2 )  =  ( ( A ^ 2 )  x.  ( F ^
2 ) ) )
219218oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D  x.  (
( A  x.  F
) ^ 2 ) )  =  ( D  x.  ( ( A ^ 2 )  x.  ( F ^ 2 ) ) ) )
2202sqcld 11243 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
2217, 220, 37mulassd 8858 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( D  x.  ( A ^ 2 ) )  x.  ( F ^ 2 ) )  =  ( D  x.  ( ( A ^
2 )  x.  ( F ^ 2 ) ) ) )
222219, 221eqtr4d 2318 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D  x.  (
( A  x.  F
) ^ 2 ) )  =  ( ( D  x.  ( A ^ 2 ) )  x.  ( F ^
2 ) ) )
223217, 222oveq12d 5876 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( D  x.  ( B  x.  F ) ) ^
2 )  -  ( D  x.  ( ( A  x.  F ) ^ 2 ) ) )  =  ( ( ( ( D  x.  D )  x.  ( B ^ 2 ) )  x.  ( F ^
2 ) )  -  ( ( D  x.  ( A ^ 2 ) )  x.  ( F ^ 2 ) ) ) )
224210, 223oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( A  x.  E ) ^ 2 )  -  ( D  x.  (
( B  x.  E
) ^ 2 ) ) )  +  ( ( ( D  x.  ( B  x.  F
) ) ^ 2 )  -  ( D  x.  ( ( A  x.  F ) ^
2 ) ) ) )  =  ( ( ( ( A ^
2 )  x.  ( E ^ 2 ) )  -  ( ( D  x.  ( B ^
2 ) )  x.  ( E ^ 2 ) ) )  +  ( ( ( ( D  x.  D )  x.  ( B ^
2 ) )  x.  ( F ^ 2 ) )  -  (
( D  x.  ( A ^ 2 ) )  x.  ( F ^
2 ) ) ) ) )
2257, 207mulcld 8855 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
226220, 225, 36subdird 9236 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  x.  ( E ^ 2 ) )  =  ( ( ( A ^ 2 )  x.  ( E ^
2 ) )  -  ( ( D  x.  ( B ^ 2 ) )  x.  ( E ^ 2 ) ) ) )
227 pellex.no1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  C )
228227oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  x.  ( E ^ 2 ) )  =  ( C  x.  ( E ^ 2 ) ) )
229226, 228eqtr3d 2317 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  ( E ^ 2 ) )  -  (
( D  x.  ( B ^ 2 ) )  x.  ( E ^
2 ) ) )  =  ( C  x.  ( E ^ 2 ) ) )
2307, 7, 207mulassd 8858 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( D  x.  D )  x.  ( B ^ 2 ) )  =  ( D  x.  ( D  x.  ( B ^ 2 ) ) ) )
231230oveq1d 5873 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( D  x.  D )  x.  ( B ^ 2 ) )  -  ( D  x.  ( A ^ 2 ) ) )  =  ( ( D  x.  ( D  x.  ( B ^
2 ) ) )  -  ( D  x.  ( A ^ 2 ) ) ) )
232231oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( D  x.  D )  x.  ( B ^
2 ) )  -  ( D  x.  ( A ^ 2 ) ) )  x.  ( F ^ 2 ) )  =  ( ( ( D  x.  ( D  x.  ( B ^
2 ) ) )  -  ( D  x.  ( A ^ 2 ) ) )  x.  ( F ^ 2 ) ) )
233215, 207mulcld 8855 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( D  x.  D )  x.  ( B ^ 2 ) )  e.  CC )
2347, 220mulcld 8855 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D  x.  ( A ^ 2 ) )  e.  CC )
235233, 234, 37subdird 9236 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( D  x.  D )  x.  ( B ^
2 ) )  -  ( D  x.  ( A ^ 2 ) ) )  x.  ( F ^ 2 ) )  =  ( ( ( ( D  x.  D
)  x.  ( B ^ 2 ) )  x.  ( F ^
2 ) )  -  ( ( D  x.  ( A ^ 2 ) )  x.  ( F ^ 2 ) ) ) )
236 subdi 9213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  CC  /\  ( D  x.  ( B ^ 2 ) )  e.  CC  /\  ( A ^ 2 )  e.  CC )  ->  ( D  x.  ( ( D  x.  ( B ^ 2 ) )  -  ( A ^
2 ) ) )  =  ( ( D  x.  ( D  x.  ( B ^ 2 ) ) )  -  ( D  x.  ( A ^ 2 ) ) ) )
237236eqcomd 2288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  CC  /\  ( D  x.  ( B ^ 2 ) )  e.  CC  /\  ( A ^ 2 )  e.  CC )  ->  (
( D  x.  ( D  x.  ( B ^ 2 ) ) )  -  ( D  x.  ( A ^
2 ) ) )  =  ( D  x.  ( ( D  x.  ( B ^ 2 ) )  -  ( A ^ 2 ) ) ) )
2387, 225, 220, 237syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( D  x.  ( D  x.  ( B ^ 2 ) ) )  -  ( D  x.  ( A ^
2 ) ) )  =  ( D  x.  ( ( D  x.  ( B ^ 2 ) )  -  ( A ^ 2 ) ) ) )
239 negsubdi2 9106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( D  x.  ( B ^ 2 ) )  e.  CC )  ->  -u ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  ( ( D  x.  ( B ^ 2 ) )  -  ( A ^
2 ) ) )
240239eqcomd 2288 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( D  x.  ( B ^ 2 ) )  e.  CC )  -> 
( ( D  x.  ( B ^ 2 ) )  -  ( A ^ 2 ) )  =  -u ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )
241220, 225, 240syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( D  x.  ( B ^ 2 ) )  -  ( A ^ 2 ) )  =  -u ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )
242227negeqd 9046 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  -> 
-u ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  -u C
)
243241, 242eqtrd 2315 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( D  x.  ( B ^ 2 ) )  -  ( A ^ 2 ) )  =  -u C )
244243oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D  x.  (
( D  x.  ( B ^ 2 ) )  -  ( A ^
2 ) ) )  =  ( D  x.  -u C ) )
2457, 16mulneg2d 9233 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D  x.  -u C
)  =  -u ( D  x.  C )
)
246238, 244, 2453eqtrd 2319 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( D  x.  ( D  x.  ( B ^ 2 ) ) )  -  ( D  x.  ( A ^
2 ) ) )  =  -u ( D  x.  C ) )
247246oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( D  x.  ( D  x.  ( B ^ 2 ) ) )  -  ( D  x.  ( A ^ 2 ) ) )  x.  ( F ^ 2 ) )  =  ( -u ( D  x.  C )  x.  ( F ^ 2 ) ) )
248232, 235, 2473eqtr3d 2323 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( D  x.  D )  x.  ( B ^
2 ) )  x.  ( F ^ 2 ) )  -  (
( D  x.  ( A ^ 2 ) )  x.  ( F ^
2 ) ) )  =  ( -u ( D  x.  C )  x.  ( F ^ 2 ) ) )
249229, 248oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( A ^ 2 )  x.  ( E ^
2 ) )  -  ( ( D  x.  ( B ^ 2 ) )  x.  ( E ^ 2 ) ) )  +  ( ( ( ( D  x.  D )  x.  ( B ^ 2 ) )  x.  ( F ^
2 ) )  -  ( ( D  x.  ( A ^ 2 ) )  x.  ( F ^ 2 ) ) ) )  =  ( ( C  x.  ( E ^ 2 ) )  +  ( -u ( D  x.  C )  x.  ( F ^ 2 ) ) ) )
2507, 16mulcld 8855 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D  x.  C
)  e.  CC )
251250, 37mulneg1d 9232 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( -u ( D  x.  C )  x.  ( F ^ 2 ) )  =  -u ( ( D  x.  C )  x.  ( F ^ 2 ) ) )
2527, 16mulcomd 8856 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( D  x.  C
)  =  ( C  x.  D ) )
253252oveq1d 5873 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( D  x.  C )  x.  ( F ^ 2 ) )  =  ( ( C  x.  D )  x.  ( F ^ 2 ) ) )
25416, 7, 37mulassd 8858 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( C  x.  D )  x.  ( F ^ 2 ) )  =  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )
255253, 254eqtrd 2315 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( D  x.  C )  x.  ( F ^ 2 ) )  =  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )
256255negeqd 9046 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
-u ( ( D  x.  C )  x.  ( F ^ 2 ) )  =  -u ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )
257251, 256eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( -u ( D  x.  C )  x.  ( F ^ 2 ) )  =  -u ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )
258257oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C  x.  ( E ^ 2 ) )  +  ( -u ( D  x.  C
)  x.  ( F ^ 2 ) ) )  =  ( ( C  x.  ( E ^ 2 ) )  +  -u ( C  x.  ( D  x.  ( F ^ 2 ) ) ) ) )
25916, 36mulcld 8855 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  x.  ( E ^ 2 ) )  e.  CC )
26016, 38mulcld 8855 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  x.  ( D  x.  ( F ^ 2 ) ) )  e.  CC )
261259, 260negsubd 9163 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C  x.  ( E ^ 2 ) )  +  -u ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )  =  ( ( C  x.  ( E ^
2 ) )  -  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) ) )
26263oveq2d 5874 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  x.  (
( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) ) )  =  ( C  x.  C ) )
263 subdi 9213 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  CC  /\  ( E ^ 2 )  e.  CC  /\  ( D  x.  ( F ^ 2 ) )  e.  CC )  -> 
( C  x.  (
( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) ) )  =  ( ( C  x.  ( E ^ 2 ) )  -  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) ) )
264263eqcomd 2288 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  ( E ^ 2 )  e.  CC  /\  ( D  x.  ( F ^ 2 ) )  e.  CC )  -> 
( ( C  x.  ( E ^ 2 ) )  -  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )  =  ( C  x.  (
( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) ) ) )
26516, 36, 38, 264syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( C  x.  ( E ^ 2 ) )  -  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )  =  ( C  x.  (
( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) ) ) )
26616sqvald 11242 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C ^ 2 )  =  ( C  x.  C ) )
267262, 265, 2663eqtr4d 2325 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C  x.  ( E ^ 2 ) )  -  ( C  x.  ( D  x.  ( F ^ 2 ) ) ) )  =  ( C ^ 2 ) )
268258, 261, 2673eqtrd 2319 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  x.  ( E ^ 2 ) )  +  ( -u ( D  x.  C
)  x.  ( F ^ 2 ) ) )  =  ( C ^ 2 ) )
269224, 249, 2683eqtrd 2319 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  x.  E ) ^ 2 )  -  ( D  x.  (
( B  x.  E
) ^ 2 ) ) )  +  ( ( ( D  x.  ( B  x.  F
) ) ^ 2 )  -  ( D  x.  ( ( A  x.  F ) ^
2 ) ) ) )  =  ( C ^ 2 ) )
270194, 203, 2693eqtr2d 2321 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( A  x.  E )  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F
) )  x.  ( D  x.  ( B  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E ) ) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F )
) ) ) )  =  ( C ^
2 ) )
271184, 193, 2703eqtrd 2319 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( A  x.  E
)  x.  ( A  x.  E ) )  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F )
) ) )  -  ( ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F )
) )  +  ( ( A  x.  E
)  x.  ( D  x.  ( B  x.  F ) ) ) ) )  -  (
( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) ) )  =  ( C ^ 2 ) )
272271oveq1d 5873 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( ( A  x.  E )  x.  ( A  x.  E )
)  +  ( ( D  x.  ( B  x.  F ) )  x.  ( D  x.  ( B  x.  F
) ) ) )  -  ( ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F
) ) )  +  ( ( A  x.  E )  x.  ( D  x.  ( B  x.  F ) ) ) ) )  -  (
( ( D  x.  ( ( B  x.  E )  x.  ( B  x.  E )
) )  +  ( D  x.  ( ( A  x.  F )  x.  ( A  x.  F ) ) ) )  -  ( ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F ) ) )  +  ( D  x.  ( ( B  x.  E )  x.  ( A  x.  F )
) ) ) ) )  /  ( C ^ 2 ) )  =  ( ( C ^ 2 )  / 
( C ^ 2 ) ) )
273143, 146dividd 9534 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  /  ( C ^ 2 ) )  =  1 )
274171, 272, 2733eqtrd 2319 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  x.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) ) )  -  ( D  x.  (
( ( B  x.  E )  -  ( A  x.  F )
)  x.  ( ( B  x.  E )  -  ( A  x.  F ) ) ) ) )  /  ( C ^ 2 ) )  =  1 )
275152, 156, 2743eqtr2d 2321 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
) ) ^ 2 )  -  ( D  x.  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
) ) ^ 2 ) ) )  =  1 )
276275adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  (
( ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) ) ^ 2 )  -  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) )  =  1 )
277 simpr 447 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  =  0 )
278277oveq1d 5873 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C )  =  ( 0  /  C
) )
279278fveq2d 5529 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  ( abs `  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  /  C ) )  =  ( abs `  (
0  /  C ) ) )
28016, 17div0d 9535 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0  /  C
)  =  0 )
281280fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  (
0  /  C ) )  =  ( abs `  0 ) )
282 abs0 11770 . . . . . . . . . . . . 13  |-  ( abs `  0 )  =  0
283281, 282syl6eq 2331 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  (
0  /  C ) )  =  0 )
284283adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  ( abs `  ( 0  /  C ) )  =  0 )
285279, 284eqtrd 2315 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  ( abs `  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  /  C ) )  =  0 )
286285oveq1d 5873 . . . . . . . . 9  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  (
( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) ) ^ 2 )  =  ( 0 ^ 2 ) )
287 sq0 11195 . . . . . . . . 9  |-  ( 0 ^ 2 )  =  0
288286, 287syl6eq 2331 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  (
( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) ) ^ 2 )  =  0 )
289288oveq1d 5873 . . . . . . 7  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  (
( ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) ) ^ 2 )  -  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) )  =  ( 0  -  ( D  x.  ( ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
) ) ^ 2 ) ) ) )
290276, 289eqtr3d 2317 . . . . . 6  |-  ( (
ph  /\  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F
) ) )  =  0 )  ->  1  =  ( 0  -  ( D  x.  (
( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) ) ^ 2 ) ) ) )
291126, 290mtand 640 . . . . 5  |-  ( ph  ->  -.  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  =  0 )
292 df-ne 2448 . . . . 5  |-  ( ( ( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  =/=  0  <->  -.  (
( A  x.  E
)  -  ( D  x.  ( B  x.  F ) ) )  =  0 )
293291, 292sylibr 203 . . . 4  |-  ( ph  ->  ( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  =/=  0 )
29414, 16, 293, 17divne0d 9552 . . 3  |-  ( ph  ->  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
)  =/=  0 )
295 nnabscl 11809 . . 3  |-  ( ( ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
)  e.  ZZ  /\  ( ( ( A  x.  E )  -  ( D  x.  ( B  x.  F )
) )  /  C
)  =/=  0 )  ->  ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) )  e.  NN )
296106, 294, 295syl2anc 642 . 2  |-  ( ph  ->  ( abs `  (
( ( A  x.  E )  -  ( D  x.  ( B  x.  F ) ) )  /  C ) )  e.  NN )
297113, 16, 17absdivd 11937 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) )  =  ( ( abs `  ( ( B  x.  E )  -  ( A  x.  F ) ) )  /  ( abs `  C
) ) )
298 negsub 9095 . . . . . . . . . . . 12  |-  ( ( ( B  x.  E
)  e.  CC  /\  ( A  x.  F
)  e.  CC )  ->  ( ( B  x.  E )  + 
-u ( A  x.  F ) )  =  ( ( B  x.  E )  -  ( A  x.  F )
) )
299298eqcomd 2288 . . . . . . . . . . 11  |-  ( ( ( B  x.  E
)  e.  CC  /\  ( A  x.  F
)  e.  CC )  ->  ( ( B  x.  E )  -  ( A  x.  F
) )  =  ( ( B  x.  E
)  +  -u ( A  x.  F )
) )
300111, 112, 299syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  x.  E )  -  ( A  x.  F )
)  =  ( ( B  x.  E )  +  -u ( A  x.  F ) ) )
301300oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  mod  ( abs `  C ) )  =  ( ( ( B  x.  E )  +  -u ( A  x.  F ) )  mod  ( abs `  C
) ) )
302134renegcld 9210 . . . . . . . . . 10  |-  ( ph  -> 
-u ( A  x.  F )  e.  RR )
30311, 4mulcomd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  x.  E
)  =  ( E  x.  F ) )
304303oveq1d 5873 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  x.  E )  mod  ( abs `  C ) )  =  ( ( E  x.  F )  mod  ( abs `  C
) ) )
305 modmul1 11002 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  F  e.  RR )  /\  ( E  e.  ZZ  /\  ( abs `  C )  e.  RR+ )  /\  ( B  mod  ( abs `  C ) )  =  ( F  mod  ( abs `  C
) ) )  -> 
( ( B  x.  E )  mod  ( abs `  C ) )  =  ( ( F  x.  E )  mod  ( abs `  C
) ) )
30626, 27, 32, 31, 80, 305syl221anc 1193 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  x.  E )  mod  ( abs `  C ) )  =  ( ( F  x.  E )  mod  ( abs `  C
) ) )
307 modmul1 11002 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  E  e.  RR )  /\  ( F  e.  ZZ  /\  ( abs `  C )  e.  RR+ )  /\  ( A  mod  ( abs `  C ) )  =  ( E  mod  ( abs `  C
) ) )  -> 
( ( A  x.  F )  mod  ( abs `  C ) )  =  ( ( E  x.  F )  mod  ( abs `  C
) ) )
30822, 23, 78, 31, 33, 307syl221anc 1193 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  F )  mod  ( abs `  C ) )  =  ( ( E  x.  F )  mod  ( abs `  C
) ) )
309304, 306, 3083eqtr4d 2325 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  x.  E )  mod  ( abs `  C ) )  =  ( ( A  x.  F )  mod  ( abs `  C
) ) )
310 modadd1 11001 . . . . . . . . . 10  |-  ( ( ( ( B  x.  E )  e.  RR  /\  ( A  x.  F
)  e.  RR )  /\  ( -u ( A  x.  F )  e.  RR  /\  ( abs `  C )  e.  RR+ )  /\  ( ( B  x.  E )  mod  ( abs `  C
) )  =  ( ( A  x.  F
)  mod  ( abs `  C ) ) )  ->  ( ( ( B  x.  E )  +  -u ( A  x.  F ) )  mod  ( abs `  C
) )  =  ( ( ( A  x.  F )  +  -u ( A  x.  F
) )  mod  ( abs `  C ) ) )
311133, 134, 302, 31, 309, 310syl221anc 1193 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  E )  + 
-u ( A  x.  F ) )  mod  ( abs `  C
) )  =  ( ( ( A  x.  F )  +  -u ( A  x.  F
) )  mod  ( abs `  C ) ) )
312112negidd 9147 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  F )  +  -u ( A  x.  F
) )  =  0 )
313312oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  x.  F )  + 
-u ( A  x.  F ) )  mod  ( abs `  C
) )  =  ( 0  mod  ( abs `  C ) ) )
314301, 311, 3133eqtrd 2319 . . . . . . . 8  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  mod  ( abs `  C ) )  =  ( 0  mod  ( abs `  C
) ) )
315314, 66eqtrd 2315 . . . . . . 7  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  mod  ( abs `  C ) )  =  0 )
316 absmod0 11788 . . . . . . . 8  |-  ( ( ( ( B  x.  E )  -  ( A  x.  F )
)  e.  RR  /\  ( abs `  C )  e.  RR+ )  ->  (
( ( ( B  x.  E )  -  ( A  x.  F
) )  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  ( ( B  x.  E )  -  ( A  x.  F
) ) )  mod  ( abs `  C
) )  =  0 ) )
317135, 31, 316syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( ( ( B  x.  E )  -  ( A  x.  F ) )  mod  ( abs `  C
) )  =  0  <-> 
( ( abs `  (
( B  x.  E
)  -  ( A  x.  F ) ) )  mod  ( abs `  C ) )  =  0 ) )
318315, 317mpbid 201 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( B  x.  E
)  -  ( A  x.  F ) ) )  mod  ( abs `  C ) )  =  0 )
319113abscld 11918 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( B  x.  E
)  -  ( A  x.  F ) ) )  e.  RR )
320 mod0 10978 . . . . . . 7  |-  ( ( ( abs `  (
( B  x.  E
)  -  ( A  x.  F ) ) )  e.  RR  /\  ( abs `  C )  e.  RR+ )  ->  (
( ( abs `  (
( B  x.  E
)  -  ( A  x.  F ) ) )  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  ( ( B  x.  E )  -  ( A  x.  F )
) )  /  ( abs `  C ) )  e.  ZZ ) )
321319, 31, 320syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( ( abs `  ( ( B  x.  E )  -  ( A  x.  F )
) )  mod  ( abs `  C ) )  =  0  <->  ( ( abs `  ( ( B  x.  E )  -  ( A  x.  F
) ) )  / 
( abs `  C
) )  e.  ZZ ) )
322318, 321mpbid 201 . . . . 5  |-  ( ph  ->  ( ( abs `  (
( B  x.  E
)  -  ( A  x.  F ) ) )  /  ( abs `  C ) )  e.  ZZ )
323297, 322eqeltrd 2357 . . . 4  |-  ( ph  ->  ( abs `  (
( ( B  x.  E )  -  ( A  x.  F )
)  /  C ) )  e.  ZZ )
324 absz 11796 . . . . 5  |-  ( ( ( ( B  x.  E )  -  ( A  x.  F )
)  /  C )  e.  RR  ->  (
( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
)  e.  ZZ  <->  ( abs `  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
) )  e.  ZZ ) )
325136, 324syl 15 . . . 4  |-  ( ph  ->  ( ( ( ( B  x.  E )  -  ( A  x.  F ) )  /  C )  e.  ZZ  <->  ( abs `  ( ( ( B  x.  E
)  -  ( A  x.  F ) )  /  C ) )  e.  ZZ ) )
326323, 325mpbird 223 . . 3  |-  ( ph  ->  ( ( ( B  x.  E )  -  ( A  x.  F
) )  /  C
)  e.  ZZ )
327 pellex.neq . . . . . . 7  |-  ( ph  ->  -.  ( A  =  E  /\  B  =  F ) )
32810nnne0d 9790 . . . . . . . . 9  |-  ( ph  ->  F  =/=  0 )
3293nnne0d 9790 . . . . . . . . 9  |-  ( ph  ->  E  =/=  0 )
3309, 11, 2, 4, 328, 329divmuleqd 9582 . . . . . . . 8  |-  ( ph  ->  ( ( B  /  F )  =  ( A  /  E )  <-> 
( B  x.  E
)  =  ( A  x.  F ) ) )
33163adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) )  =  C )
332331eqcomd 2288 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  C  =  ( ( E ^
2 )  -  ( D  x.  ( F ^ 2 ) ) ) )
333332oveq2d 5874 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( B  /  F
) ^ 2 )  x.  C )  =  ( ( ( B  /  F ) ^
2 )  x.  (
( E ^ 2 )  -  ( D  x.  ( F ^
2 ) ) ) ) )
3349, 11, 328divcld 9536 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  /  F
)  e.  CC )
335334sqcld 11243 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  /  F ) ^ 2 )  e.  CC )
336335adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( ( B  /  F ) ^
2 )  e.  CC )
33736adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( E ^ 2 )  e.  CC )
33838adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( D  x.  ( F ^ 2 ) )  e.  CC )
339336, 337, 338subdid 9235 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( B  /  F
) ^ 2 )  x.  ( ( E ^ 2 )  -  ( D  x.  ( F ^ 2 ) ) ) )  =  ( ( ( ( B  /  F ) ^
2 )  x.  ( E ^ 2 ) )  -  ( ( ( B  /  F ) ^ 2 )  x.  ( D  x.  ( F ^ 2 ) ) ) ) )
340 oveq1 5865 . . . . . . . . . . . . . . . . 17  |-  ( ( B  /  F )  =  ( A  /  E )  ->  (
( B  /  F
) ^ 2 )  =  ( ( A  /  E ) ^
2 ) )
341340oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( ( B  /  F )  =  ( A  /  E )  ->  (
( ( B  /  F ) ^ 2 )  x.  ( E ^ 2 ) )  =  ( ( ( A  /  E ) ^ 2 )  x.  ( E ^ 2 ) ) )
342341adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( B  /  F
) ^ 2 )  x.  ( E ^
2 ) )  =  ( ( ( A  /  E ) ^
2 )  x.  ( E ^ 2 ) ) )
3432adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  A  e.  CC )
3444adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  E  e.  CC )
345329adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  E  =/=  0 )
346343, 344, 345sqdivd 11258 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( ( A  /  E ) ^
2 )  =  ( ( A ^ 2 )  /  ( E ^ 2 ) ) )
347346oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( A  /  E
) ^ 2 )  x.  ( E ^
2 ) )  =  ( ( ( A ^ 2 )  / 
( E ^ 2 ) )  x.  ( E ^ 2 ) ) )
348220adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( A ^ 2 )  e.  CC )
349 sqne0 11170 . . . . . . . . . . . . . . . . . . 19  |-  ( E  e.  CC  ->  (
( E ^ 2 )  =/=  0  <->  E  =/=  0 ) )
3504, 349syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( E ^
2 )  =/=  0  <->  E  =/=  0 ) )
351329, 350mpbird 223 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E ^ 2 )  =/=  0 )
352351adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( E ^ 2 )  =/=  0 )
353348, 337, 352divcan1d 9537 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( A ^ 2 )  /  ( E ^ 2 ) )  x.  ( E ^
2 ) )  =  ( A ^ 2 ) )
354342, 347, 3533eqtrd 2319 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( B  /  F
) ^ 2 )  x.  ( E ^
2 ) )  =  ( A ^ 2 ) )
3557adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  D  e.  CC )
35637adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( F ^ 2 )  e.  CC )
357336, 355, 356mul12d 9021 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( B  /  F
) ^ 2 )  x.  ( D  x.  ( F ^ 2 ) ) )  =  ( D  x.  ( ( ( B  /  F
) ^ 2 )  x.  ( F ^
2 ) ) ) )
3589adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  B  e.  CC )
35911adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  F  e.  CC )
360328adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  F  =/=  0 )
361358, 359, 360sqdivd 11258 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( ( B  /  F ) ^
2 )  =  ( ( B ^ 2 )  /  ( F ^ 2 ) ) )
362361oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B  /  F )  =  ( A  /  E ) )  ->  ( (
( B  /  F
)