Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Structured version   Unicode version

Theorem pellfund14 26963
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x
) )
Distinct variable groups:    x, D    x, A

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 26925 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR+ )
2 pellfundrp 26953 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR+ )
32adantr 453 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  RR+ )
4 pellfundne1 26954 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  =/=  1 )
54adantr 453 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  =/=  1 )
6 reglogcl 26955 . . . 4  |-  ( ( A  e.  RR+  /\  (PellFund `  D )  e.  RR+  /\  (PellFund `  D )  =/=  1 )  ->  (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR )
71, 3, 5, 6syl3anc 1185 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR )
87flcld 11209 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ )
9 pell14qrre 26922 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR )
109recnd 9116 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  CC )
113, 8rpexpcld 11548 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+ )
1211rpcnd 10652 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  CC )
138znegcld 10379 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ )
143, 13rpexpcld 11548 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+ )
1514rpcnd 10652 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  CC )
1614rpne0d 10655 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =/=  0 )
17 simpl 445 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  D  e.  ( NN  \NN )
)
18 pell1qrss14 26933 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
19 pellfundex 26951 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
2018, 19sseldd 3351 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell14QR `  D )
)
2120adantr 453 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  (Pell14QR `  D )
)
22 pell14qrexpcl 26932 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  (PellFund `  D
)  e.  (Pell14QR `  D
)  /\  -u ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  e.  ZZ )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )
2317, 21, 13, 22syl3anc 1185 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )
24 pell14qrmulcl 26928 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )  ->  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  e.  (Pell14QR `  D ) )
2523, 24mpd3an3 1281 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  (Pell14QR `  D
) )
26 1rp 10618 . . . . . . . . . 10  |-  1  e.  RR+
2726a1i 11 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  e.  RR+ )
28 modge0 11259 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  /\  1  e.  RR+ )  ->  0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  mod  1
) )
297, 27, 28syl2anc 644 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  mod  1
) )
307recnd 9116 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  CC )
318zcnd 10378 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  CC )
3230, 31negsubd 9419 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  -  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
33 modfrac 11263 . . . . . . . . . 10  |-  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  ->  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  =  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  -  ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
347, 33syl 16 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  =  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  -  ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
3532, 34eqtr4d 2473 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  mod  1 ) )
3629, 35breqtrrd 4240 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  +  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) ) )
37 reglog1 26961 . . . . . . . 8  |-  ( ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 )  ->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  =  0 )
383, 5, 37syl2anc 644 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  1
)  /  ( log `  (PellFund `  D )
) )  =  0 )
39 reglogmul 26958 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+  /\  (
(PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 ) )  ->  ( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  +  ( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) ) ) )
401, 14, 3, 5, 39syl112anc 1189 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  +  ( ( log `  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
41 reglogexpbas 26962 . . . . . . . . . 10  |-  ( (
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D )  =/=  1 ) )  -> 
( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) )  =  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) )
4213, 3, 5, 41syl12anc 1183 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) )  =  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) )
4342oveq2d 6099 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  +  ( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
4440, 43eqtrd 2470 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
4536, 38, 443brtr4d 4244 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  1
)  /  ( log `  (PellFund `  D )
) )  <_  (
( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) ) )
461, 14rpmulcld 10666 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+ )
47 pellfundgt1 26948 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
1  <  (PellFund `  D
) )
4847adantr 453 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  <  (PellFund `  D
) )
49 reglogleb 26957 . . . . . . 7  |-  ( ( ( 1  e.  RR+  /\  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+ )  /\  ( (PellFund `  D
)  e.  RR+  /\  1  <  (PellFund `  D )
) )  ->  (
1  <_  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  <_  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
5027, 46, 3, 48, 49syl22anc 1186 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( 1  <_  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  <_  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
5145, 50mpbird 225 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  <_  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
52 modlt 11260 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  /\  1  e.  RR+ )  ->  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  <  1
)
537, 27, 52syl2anc 644 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  <  1
)
5435, 53eqbrtrd 4234 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  <  1 )
55 reglogbas 26960 . . . . . . . 8  |-  ( ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 )  ->  ( ( log `  (PellFund `  D )
)  /  ( log `  (PellFund `  D )
) )  =  1 )
563, 5, 55syl2anc 644 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) )  =  1 )
5754, 44, 563brtr4d 4244 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  <  ( ( log `  (PellFund `  D )
)  /  ( log `  (PellFund `  D )
) ) )
58 reglogltb 26956 . . . . . . 7  |-  ( ( ( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+  /\  (PellFund `  D )  e.  RR+ )  /\  ( (PellFund `  D
)  e.  RR+  /\  1  <  (PellFund `  D )
) )  ->  (
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
)  <->  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  < 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) ) ) )
5946, 3, 3, 48, 58syl22anc 1186 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
)  <->  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  < 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) ) ) )
6057, 59mpbird 225 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
) )
61 pellfund14gap 26952 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  (Pell14QR `  D
)  /\  ( 1  <_  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /\  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <  (PellFund `  D ) ) )  ->  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  1 )
6217, 25, 51, 60, 61syl112anc 1189 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  1 )
6331negidd 9403 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  0 )
6463oveq2d 6099 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( (PellFund `  D ) ^ 0 ) )
653rpcnd 10652 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  CC )
663rpne0d 10655 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  =/=  0 )
67 expaddz 11426 . . . . . 6  |-  ( ( ( (PellFund `  D
)  e.  CC  /\  (PellFund `  D )  =/=  0 )  /\  (
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  e.  ZZ ) )  ->  ( (PellFund `  D
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) )  +  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  =  ( ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) )  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6865, 66, 8, 13, 67syl22anc 1186 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6965exp0d 11519 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ 0 )  =  1 )
7064, 68, 693eqtr3rd 2479 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
7162, 70eqtrd 2470 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
7210, 12, 15, 16, 71mulcan2ad 9660 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
73 oveq2 6091 . . . 4  |-  ( x  =  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  -> 
( (PellFund `  D ) ^ x )  =  ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
7473eqeq2d 2449 . . 3  |-  ( x  =  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  -> 
( A  =  ( (PellFund `  D ) ^ x )  <->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )
7574rspcev 3054 . 2  |-  ( ( ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  A  =  ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x ) )
768, 72, 75syl2anc 644 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708    \ cdif 3319   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    < clt 9122    <_ cle 9123    - cmin 9293   -ucneg 9294    / cdiv 9679   NNcn 10002   ZZcz 10284   RR+crp 10614   |_cfl 11203    mod cmo 11252   ^cexp 11384   logclog 20454  ◻NNcsquarenn 26901  Pell1QRcpell1qr 26902  Pell14QRcpell14qr 26904  PellFundcpellfund 26905
This theorem is referenced by:  pellfund14b  26964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-numer 13129  df-denom 13130  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-squarenn 26906  df-pell1qr 26907  df-pell14qr 26908  df-pell1234qr 26909  df-pellfund 26910
  Copyright terms: Public domain W3C validator