Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundex Unicode version

Theorem pellfundex 26839
Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 26829. (Contributed by Stefan O'Rear, 18-Sep-2014.)

Assertion
Ref Expression
pellfundex  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)

Proof of Theorem pellfundex
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10025 . . . 4  |-  2  e.  RR
2 pellfundre 26834 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR )
3 remulcl 9031 . . . 4  |-  ( ( 2  e.  RR  /\  (PellFund `  D )  e.  RR )  ->  (
2  x.  (PellFund `  D
) )  e.  RR )
41, 2, 3sylancr 645 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( 2  x.  (PellFund `  D ) )  e.  RR )
5 0re 9047 . . . . . . . 8  |-  0  e.  RR
65a1i 11 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
0  e.  RR )
7 1re 9046 . . . . . . . 8  |-  1  e.  RR
87a1i 11 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
1  e.  RR )
9 0lt1 9506 . . . . . . . 8  |-  0  <  1
109a1i 11 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
0  <  1 )
11 pellfundgt1 26836 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
1  <  (PellFund `  D
) )
126, 8, 2, 10, 11lttrd 9187 . . . . . 6  |-  ( D  e.  ( NN  \NN )  -> 
0  <  (PellFund `  D
) )
132, 12elrpd 10602 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR+ )
142, 13ltaddrpd 10633 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  < 
( (PellFund `  D )  +  (PellFund `  D )
) )
152recnd 9070 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  CC )
16152timesd 10166 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
( 2  x.  (PellFund `  D ) )  =  ( (PellFund `  D
)  +  (PellFund `  D
) ) )
1714, 16breqtrrd 4198 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  < 
( 2  x.  (PellFund `  D ) ) )
18 pellfundglb 26838 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  ( 2  x.  (PellFund `  D )
)  e.  RR  /\  (PellFund `  D )  < 
( 2  x.  (PellFund `  D ) ) )  ->  E. a  e.  (Pell1QR `  D ) ( (PellFund `  D )  <_  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )
194, 17, 18mpd3an23 1281 . 2  |-  ( D  e.  ( NN  \NN )  ->  E. a  e.  (Pell1QR `  D ) ( (PellFund `  D )  <_  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )
202adantr 452 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
(PellFund `  D )  e.  RR )
21 pell1qrss14 26821 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
2221sselda 3308 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
a  e.  (Pell14QR `  D
) )
23 pell14qrre 26810 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell14QR `  D ) )  -> 
a  e.  RR )
2422, 23syldan 457 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
a  e.  RR )
2520, 24leloed 9172 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  <_  a  <->  ( (PellFund `  D
)  <  a  \/  (PellFund `  D )  =  a ) ) )
26 simpll 731 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  D  e.  ( NN  \NN ) )
2724adantr 452 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  a  e.  RR )
28 simprl 733 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  (PellFund `  D )  <  a )
29 pellfundglb 26838 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  RR  /\  (PellFund `  D )  <  a )  ->  E. b  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  b  /\  b  < 
a ) )
3026, 27, 28, 29syl3anc 1184 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  E. b  e.  (Pell1QR `  D ) ( (PellFund `  D )  <_  b  /\  b  <  a ) )
31 simp-4l 743 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  ->  D  e.  ( NN  \NN )
)
32 simp-4r 744 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  e.  (Pell1QR `  D
) )
33 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  e.  (Pell1QR `  D
) )
34 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  <  a )
3524ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  e.  RR )
364adantr 452 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( 2  x.  (PellFund `  D ) )  e.  RR )
3736ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( 2  x.  (PellFund `  D ) )  e.  RR )
3821adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
3938ad3antrrr 711 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
4039, 33sseldd 3309 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  e.  (Pell14QR `  D
) )
41 pell14qrre 26810 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  b  e.  (Pell14QR `  D ) )  -> 
b  e.  RR )
4231, 40, 41syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  e.  RR )
43 remulcl 9031 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  b  e.  RR )  ->  ( 2  x.  b
)  e.  RR )
441, 42, 43sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( 2  x.  b
)  e.  RR )
45 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  a  <  (
2  x.  (PellFund `  D
) ) )
4645ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  <  ( 2  x.  (PellFund `  D
) ) )
47 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(PellFund `  D )  <_ 
b )
4820ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(PellFund `  D )  e.  RR )
491a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
2  e.  RR )
50 2pos 10038 . . . . . . . . . . . . . . 15  |-  0  <  2
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
0  <  2 )
52 lemul2 9819 . . . . . . . . . . . . . 14  |-  ( ( (PellFund `  D )  e.  RR  /\  b  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( (PellFund `  D )  <_  b  <->  ( 2  x.  (PellFund `  D )
)  <_  ( 2  x.  b ) ) )
5348, 42, 49, 51, 52syl112anc 1188 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( (PellFund `  D )  <_  b  <->  ( 2  x.  (PellFund `  D )
)  <_  ( 2  x.  b ) ) )
5447, 53mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( 2  x.  (PellFund `  D ) )  <_ 
( 2  x.  b
) )
5535, 37, 44, 46, 54ltletrd 9186 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  <  ( 2  x.  b ) )
56 simp1 957 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  D  e.  ( NN  \NN ) )
57213ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  (Pell1QR `  D
)  C_  (Pell14QR `  D
) )
58 simp2l 983 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  e.  (Pell1QR `  D ) )
5957, 58sseldd 3309 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  e.  (Pell14QR `  D ) )
60 simp2r 984 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  (Pell1QR `  D ) )
6157, 60sseldd 3309 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  (Pell14QR `  D ) )
62 pell14qrdivcl 26818 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell14QR `  D )  /\  b  e.  (Pell14QR `  D )
)  ->  ( a  /  b )  e.  (Pell14QR `  D )
)
6356, 59, 61, 62syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( a  /  b )  e.  (Pell14QR `  D )
)
6456, 61, 41syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  RR )
6564recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  CC )
6665mulid2d 9062 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( 1  x.  b )  =  b )
67 simp3l 985 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  <  a )
6866, 67eqbrtrd 4192 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( 1  x.  b )  < 
a )
697a1i 11 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  1  e.  RR )
7056, 59, 23syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  e.  RR )
71 pell14qrgt0 26812 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( NN 
\NN )  /\  b  e.  (Pell14QR `  D ) )  -> 
0  <  b )
7256, 61, 71syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  0  <  b )
73 ltmuldiv 9836 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  a  e.  RR  /\  (
b  e.  RR  /\  0  <  b ) )  ->  ( ( 1  x.  b )  < 
a  <->  1  <  (
a  /  b ) ) )
7469, 70, 64, 72, 73syl112anc 1188 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( (
1  x.  b )  <  a  <->  1  <  ( a  /  b ) ) )
7568, 74mpbid 202 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  1  <  ( a  /  b ) )
76 simp3r 986 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  <  ( 2  x.  b ) )
771a1i 11 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  2  e.  RR )
78 ltdivmul2 9841 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  2  e.  RR  /\  (
b  e.  RR  /\  0  <  b ) )  ->  ( ( a  /  b )  <  2  <->  a  <  (
2  x.  b ) ) )
7970, 77, 64, 72, 78syl112anc 1188 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( (
a  /  b )  <  2  <->  a  <  ( 2  x.  b ) ) )
8076, 79mpbird 224 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( a  /  b )  <  2 )
81 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( a  / 
b )  <  2
)
82 simpll 731 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  D  e.  ( NN  \NN ) )
83 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( a  / 
b )  e.  (Pell14QR `  D ) )
84 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  1  <  (
a  /  b ) )
85 pell14qrgapw 26829 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  / 
b )  e.  (Pell14QR `  D )  /\  1  <  ( a  /  b
) )  ->  2  <  ( a  /  b
) )
8682, 83, 84, 85syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  2  <  (
a  /  b ) )
87 pell14qrre 26810 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  / 
b )  e.  (Pell14QR `  D ) )  -> 
( a  /  b
)  e.  RR )
8887adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( a  / 
b )  e.  RR )
89 ltnsym 9128 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  RR  /\  ( a  /  b
)  e.  RR )  ->  ( 2  < 
( a  /  b
)  ->  -.  (
a  /  b )  <  2 ) )
901, 88, 89sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( 2  < 
( a  /  b
)  ->  -.  (
a  /  b )  <  2 ) )
9186, 90mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  -.  ( a  /  b )  <  2 )
9281, 91pm2.21dd 101 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  (PellFund `  D )  e.  (Pell1QR `  D )
)
9356, 63, 75, 80, 92syl22anc 1185 . . . . . . . . . . 11  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  (PellFund `  D
)  e.  (Pell1QR `  D
) )
9431, 32, 33, 34, 55, 93syl122anc 1193 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
9594ex 424 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  -> 
( ( (PellFund `  D
)  <_  b  /\  b  <  a )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
) )
9695rexlimdva 2790 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  ( E. b  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  b  /\  b  < 
a )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) ) )
9730, 96mpd 15 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  (PellFund `  D )  e.  (Pell1QR `  D )
)
9897exp32 589 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  <  a  ->  ( a  <  ( 2  x.  (PellFund `  D ) )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
) ) )
99 simp2 958 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  (PellFund `  D
)  =  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  (PellFund `  D )  =  a )
100 simp1r 982 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  (PellFund `  D
)  =  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  a  e.  (Pell1QR `  D )
)
10199, 100eqeltrd 2478 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  (PellFund `  D
)  =  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) )
1021013exp 1152 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  =  a  ->  ( a  <  ( 2  x.  (PellFund `  D )
)  ->  (PellFund `  D
)  e.  (Pell1QR `  D
) ) ) )
10398, 102jaod 370 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( ( (PellFund `  D
)  <  a  \/  (PellFund `  D )  =  a )  ->  (
a  <  ( 2  x.  (PellFund `  D
) )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) ) ) )
10425, 103sylbid 207 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  <_  a  ->  ( a  <  ( 2  x.  (PellFund `  D ) )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
) ) )
105104imp3a 421 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( ( (PellFund `  D
)  <_  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) ) )
106105rexlimdva 2790 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( E. a  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  a  /\  a  < 
( 2  x.  (PellFund `  D ) ) )  ->  (PellFund `  D )  e.  (Pell1QR `  D )
) )
10719, 106mpd 15 1  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   E.wrex 2667    \ cdif 3277    C_ wss 3280   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    / cdiv 9633   NNcn 9956   2c2 10005  ◻NNcsquarenn 26789  Pell1QRcpell1qr 26790  Pell14QRcpell14qr 26792  PellFundcpellfund 26793
This theorem is referenced by:  pellfund14  26851  pellfund14b  26852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-ico 10878  df-fz 11000  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-numer 13082  df-denom 13083  df-squarenn 26794  df-pell1qr 26795  df-pell14qr 26796  df-pell1234qr 26797  df-pellfund 26798
  Copyright terms: Public domain W3C validator