Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundglb Unicode version

Theorem pellfundglb 26970
Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfundglb  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  E. x  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  x  /\  x  < 
A ) )
Distinct variable groups:    x, D    x, A

Proof of Theorem pellfundglb
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pellfundval 26965 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  =  sup ( { a  e.  (Pell14QR `  D
)  |  1  < 
a } ,  RR ,  `'  <  ) )
213ad2ant1 976 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (PellFund `  D )  =  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  ) )
3 simp3 957 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (PellFund `  D )  <  A
)
42, 3eqbrtrrd 4045 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  )  <  A )
5 pellfundre 26966 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR )
653ad2ant1 976 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (PellFund `  D )  e.  RR )
72, 6eqeltrrd 2358 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  )  e.  RR )
8 simp2 956 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  A  e.  RR )
97, 8ltnled 8966 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  ( sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  )  <  A  <->  -.  A  <_  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  ) ) )
104, 9mpbid 201 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  -.  A  <_  sup ( { a  e.  (Pell14QR `  D
)  |  1  < 
a } ,  RR ,  `'  <  ) )
11 ssrab2 3258 . . . . . 6  |-  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  C_  (Pell14QR `  D )
12 pell14qrre 26942 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell14QR `  D ) )  -> 
a  e.  RR )
1312ex 423 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
( a  e.  (Pell14QR `  D )  ->  a  e.  RR ) )
1413ssrdv 3185 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
(Pell14QR `  D )  C_  RR )
15143ad2ant1 976 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (Pell14QR `  D )  C_  RR )
1611, 15syl5ss 3190 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  C_  RR )
17 pell1qrss14 26953 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
18173ad2ant1 976 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (Pell1QR `  D )  C_  (Pell14QR `  D ) )
19 pellqrex 26964 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  ->  E. a  e.  (Pell1QR `  D ) 1  < 
a )
20193ad2ant1 976 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  E. a  e.  (Pell1QR `  D )
1  <  a )
21 ssrexv 3238 . . . . . . 7  |-  ( (Pell1QR `  D )  C_  (Pell14QR `  D )  ->  ( E. a  e.  (Pell1QR `  D ) 1  < 
a  ->  E. a  e.  (Pell14QR `  D )
1  <  a )
)
2218, 20, 21sylc 56 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  E. a  e.  (Pell14QR `  D )
1  <  a )
23 rabn0 3474 . . . . . 6  |-  ( { a  e.  (Pell14QR `  D
)  |  1  < 
a }  =/=  (/)  <->  E. a  e.  (Pell14QR `  D )
1  <  a )
2422, 23sylibr 203 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  =/=  (/) )
25 infmrgelbi 26963 . . . . . 6  |-  ( ( ( { a  e.  (Pell14QR `  D )  |  1  <  a }  C_  RR  /\  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  =/=  (/)  /\  A  e.  RR )  /\  A. x  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } A  <_  x )  ->  A  <_  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  ) )
2625ex 423 . . . . 5  |-  ( ( { a  e.  (Pell14QR `  D )  |  1  <  a }  C_  RR  /\  { a  e.  (Pell14QR `  D )  |  1  <  a }  =/=  (/)  /\  A  e.  RR )  ->  ( A. x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } A  <_  x  ->  A  <_  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  ) ) )
2716, 24, 8, 26syl3anc 1182 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  ( A. x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } A  <_  x  ->  A  <_  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  ) ) )
2810, 27mtod 168 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  -.  A. x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } A  <_  x )
29 rexnal 2554 . . 3  |-  ( E. x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  -.  A  <_  x  <->  -.  A. x  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } A  <_  x )
3028, 29sylibr 203 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  E. x  e.  { a  e.  (Pell14QR `  D )  |  1  <  a }  -.  A  <_  x )
31 breq2 4027 . . . . . . . 8  |-  ( a  =  x  ->  (
1  <  a  <->  1  <  x ) )
3231elrab 2923 . . . . . . 7  |-  ( x  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } 
<->  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )
33 simprl 732 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  ->  x  e.  (Pell14QR `  D
) )
34 1re 8837 . . . . . . . . . . 11  |-  1  e.  RR
3534a1i 10 . . . . . . . . . 10  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  -> 
1  e.  RR )
36 simpl1 958 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  ->  D  e.  ( NN  \NN )
)
37 pell14qrre 26942 . . . . . . . . . . 11  |-  ( ( D  e.  ( NN 
\NN )  /\  x  e.  (Pell14QR `  D ) )  ->  x  e.  RR )
3836, 33, 37syl2anc 642 . . . . . . . . . 10  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  ->  x  e.  RR )
39 simprr 733 . . . . . . . . . 10  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  -> 
1  <  x )
4035, 38, 39ltled 8967 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  -> 
1  <_  x )
4133, 40jca 518 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  -> 
( x  e.  (Pell14QR `  D )  /\  1  <_  x ) )
42 elpell1qr2 26957 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
( x  e.  (Pell1QR `  D )  <->  ( x  e.  (Pell14QR `  D )  /\  1  <_  x ) ) )
4336, 42syl 15 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  -> 
( x  e.  (Pell1QR `  D )  <->  ( x  e.  (Pell14QR `  D )  /\  1  <_  x ) ) )
4441, 43mpbird 223 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  (Pell14QR `  D )  /\  1  <  x ) )  ->  x  e.  (Pell1QR `  D
) )
4532, 44sylan2b 461 . . . . . 6  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } )  ->  x  e.  (Pell1QR `  D
) )
4645adantrr 697 . . . . 5  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  x  e.  (Pell1QR `  D ) )
47 simpl1 958 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  D  e.  ( NN  \NN ) )
48 simprl 732 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a } )
4911, 48sseldi 3178 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  x  e.  (Pell14QR `  D ) )
50 simpr 447 . . . . . . . . . . 11  |-  ( ( x  e.  (Pell14QR `  D
)  /\  1  <  x )  ->  1  <  x )
5150a1i 10 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (
( x  e.  (Pell14QR `  D )  /\  1  <  x )  ->  1  <  x ) )
5232, 51syl5bi 208 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (
x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  ->  1  <  x ) )
5352imp 418 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } )  -> 
1  <  x )
5453adantrr 697 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  1  <  x
)
55 pellfundlb 26969 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  x  e.  (Pell14QR `  D )  /\  1  <  x )  ->  (PellFund `  D )  <_  x
)
5647, 49, 54, 55syl3anc 1182 . . . . . 6  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  (PellFund `  D )  <_  x )
57 simprr 733 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  -.  A  <_  x )
5815adantr 451 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  (Pell14QR `  D )  C_  RR )
5958, 49sseldd 3181 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  x  e.  RR )
60 simpl2 959 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  A  e.  RR )
6159, 60ltnled 8966 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  ( x  < 
A  <->  -.  A  <_  x ) )
6257, 61mpbird 223 . . . . . 6  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  x  <  A
)
6356, 62jca 518 . . . . 5  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  ( (PellFund `  D
)  <_  x  /\  x  <  A ) )
6446, 63jca 518 . . . 4  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR  /\  (PellFund `  D
)  <  A )  /\  ( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x ) )  ->  ( x  e.  (Pell1QR `  D )  /\  ( (PellFund `  D
)  <_  x  /\  x  <  A ) ) )
6564ex 423 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  (
( x  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  /\  -.  A  <_  x )  -> 
( x  e.  (Pell1QR `  D )  /\  (
(PellFund `  D )  <_  x  /\  x  <  A
) ) ) )
6665reximdv2 2652 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  ( E. x  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  -.  A  <_  x  ->  E. x  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  x  /\  x  < 
A ) ) )
6730, 66mpd 14 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR  /\  (PellFund `  D )  <  A )  ->  E. x  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  x  /\  x  < 
A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    \ cdif 3149    C_ wss 3152   (/)c0 3455   class class class wbr 4023   `'ccnv 4688   ` cfv 5255   supcsup 7193   RRcr 8736   1c1 8738    < clt 8867    <_ cle 8868   NNcn 9746  ◻NNcsquarenn 26921  Pell1QRcpell1qr 26922  Pell14QRcpell14qr 26924  PellFundcpellfund 26925
This theorem is referenced by:  pellfundex  26971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-ico 10662  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-numer 12806  df-denom 12807  df-squarenn 26926  df-pell1qr 26927  df-pell14qr 26928  df-pell1234qr 26929  df-pellfund 26930
  Copyright terms: Public domain W3C validator