Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundlb Structured version   Unicode version

Theorem pellfundlb 26938
Description: A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundlb  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (PellFund `  D )  <_  A
)

Proof of Theorem pellfundlb
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellfundval 26934 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  =  sup ( { a  e.  (Pell14QR `  D
)  |  1  < 
a } ,  RR ,  `'  <  ) )
213ad2ant1 978 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (PellFund `  D )  =  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  ) )
3 ssrab2 3420 . . . . 5  |-  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  C_  (Pell14QR `  D )
4 pell14qrre 26911 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  d  e.  (Pell14QR `  D ) )  -> 
d  e.  RR )
54ex 424 . . . . . 6  |-  ( D  e.  ( NN  \NN )  -> 
( d  e.  (Pell14QR `  D )  ->  d  e.  RR ) )
65ssrdv 3346 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(Pell14QR `  D )  C_  RR )
73, 6syl5ss 3351 . . . 4  |-  ( D  e.  ( NN  \NN )  ->  { a  e.  (Pell14QR `  D )  |  1  <  a }  C_  RR )
873ad2ant1 978 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  { a  e.  (Pell14QR `  D
)  |  1  < 
a }  C_  RR )
9 1re 9082 . . . 4  |-  1  e.  RR
10 breq2 4208 . . . . . . . 8  |-  ( a  =  c  ->  (
1  <  a  <->  1  <  c ) )
1110elrab 3084 . . . . . . 7  |-  ( c  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } 
<->  ( c  e.  (Pell14QR `  D )  /\  1  <  c ) )
12 pell14qrre 26911 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  c  e.  (Pell14QR `  D ) )  -> 
c  e.  RR )
13 ltle 9155 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  c  e.  RR )  ->  ( 1  <  c  ->  1  <_  c )
)
149, 12, 13sylancr 645 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  c  e.  (Pell14QR `  D ) )  -> 
( 1  <  c  ->  1  <_  c )
)
1514expimpd 587 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
( ( c  e.  (Pell14QR `  D )  /\  1  <  c )  ->  1  <_  c
) )
1611, 15syl5bi 209 . . . . . 6  |-  ( D  e.  ( NN  \NN )  -> 
( c  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a }  ->  1  <_  c ) )
1716ralrimiv 2780 . . . . 5  |-  ( D  e.  ( NN  \NN )  ->  A. c  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } 1  <_ 
c )
18173ad2ant1 978 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  A. c  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } 1  <_  c )
19 breq1 4207 . . . . . 6  |-  ( b  =  1  ->  (
b  <_  c  <->  1  <_  c ) )
2019ralbidv 2717 . . . . 5  |-  ( b  =  1  ->  ( A. c  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } b  <_ 
c  <->  A. c  e.  {
a  e.  (Pell14QR `  D
)  |  1  < 
a } 1  <_ 
c ) )
2120rspcev 3044 . . . 4  |-  ( ( 1  e.  RR  /\  A. c  e.  { a  e.  (Pell14QR `  D
)  |  1  < 
a } 1  <_ 
c )  ->  E. b  e.  RR  A. c  e. 
{ a  e.  (Pell14QR `  D )  |  1  <  a } b  <_  c )
229, 18, 21sylancr 645 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  E. b  e.  RR  A. c  e. 
{ a  e.  (Pell14QR `  D )  |  1  <  a } b  <_  c )
23 simp2 958 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  A  e.  (Pell14QR `  D )
)
24 simp3 959 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  1  <  A )
25 breq2 4208 . . . . 5  |-  ( a  =  A  ->  (
1  <  a  <->  1  <  A ) )
2625elrab 3084 . . . 4  |-  ( A  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } 
<->  ( A  e.  (Pell14QR `  D )  /\  1  <  A ) )
2723, 24, 26sylanbrc 646 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  A  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } )
28 infmrlb 9981 . . 3  |-  ( ( { a  e.  (Pell14QR `  D )  |  1  <  a }  C_  RR  /\  E. b  e.  RR  A. c  e. 
{ a  e.  (Pell14QR `  D )  |  1  <  a } b  <_  c  /\  A  e.  { a  e.  (Pell14QR `  D )  |  1  <  a } )  ->  sup ( { a  e.  (Pell14QR `  D
)  |  1  < 
a } ,  RR ,  `'  <  )  <_  A )
298, 22, 27, 28syl3anc 1184 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  sup ( { a  e.  (Pell14QR `  D )  |  1  <  a } ,  RR ,  `'  <  )  <_  A )
302, 29eqbrtrd 4224 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  1  <  A )  ->  (PellFund `  D )  <_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701    \ cdif 3309    C_ wss 3312   class class class wbr 4204   `'ccnv 4869   ` cfv 5446   supcsup 7437   RRcr 8981   1c1 8983    < clt 9112    <_ cle 9113   NNcn 9992  ◻NNcsquarenn 26890  Pell14QRcpell14qr 26893  PellFundcpellfund 26894
This theorem is referenced by:  pellfundglb  26939  pellfund14gap  26941  rmspecfund  26963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-pell14qr 26897  df-pell1234qr 26898  df-pellfund 26899
  Copyright terms: Public domain W3C validator