MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Unicode version

Theorem perfdvf 19269
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
perfdvf  |-  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )

Proof of Theorem perfdvf
Dummy variables  f 
s  x  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 19233 . . . . . . . . . . . . . . . . . . . 20  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
21dmmpt2ssx 6205 . . . . . . . . . . . . . . . . . . 19  |-  dom  _D  C_ 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) )
3 simpl 443 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  -> 
<. S ,  F >.  e. 
dom  _D  )
42, 3sseldi 3191 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  -> 
<. S ,  F >.  e. 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) ) )
5 oveq2 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
65opeliunxp2 4840 . . . . . . . . . . . . . . . . . 18  |-  ( <. S ,  F >.  e. 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) )  <->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm  S
) ) )
74, 6sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm  S )
) )
87simprd 449 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  F  e.  ( CC 
^pm  S ) )
9 cnex 8834 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
107simpld 445 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  S  e.  ~P CC )
11 elpm2g 6803 . . . . . . . . . . . . . . . . 17  |-  ( ( CC  e.  _V  /\  S  e.  ~P CC )  ->  ( F  e.  ( CC  ^pm  S
)  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
129, 10, 11sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F  C_  S ) ) )
138, 12mpbid 201 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S ) )
1413simpld 445 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  F : dom  F --> CC )
1514adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  F : dom  F --> CC )
162sseli 3189 . . . . . . . . . . . . . . . . . . . 20  |-  ( <. S ,  F >.  e. 
dom  _D  ->  <. S ,  F >.  e.  U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) ) )
1716, 6sylib 188 . . . . . . . . . . . . . . . . . . 19  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm 
S ) ) )
1817simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( <. S ,  F >.  e. 
dom  _D  ->  F  e.  ( CC  ^pm  S
) )
1917simpld 445 . . . . . . . . . . . . . . . . . . 19  |-  ( <. S ,  F >.  e. 
dom  _D  ->  S  e. 
~P CC )
209, 19, 11sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
2118, 20mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
2221simprd 449 . . . . . . . . . . . . . . . 16  |-  ( <. S ,  F >.  e. 
dom  _D  ->  dom  F  C_  S )
2322adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  dom  F  C_  S
)
24 elpwi 3646 . . . . . . . . . . . . . . . 16  |-  ( S  e.  ~P CC  ->  S 
C_  CC )
2510, 24syl 15 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  S  C_  CC )
2623, 25sstrd 3202 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  dom  F  C_  CC )
2726adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  dom  F  C_  CC )
28 perfdvf.1 . . . . . . . . . . . . . . . . . 18  |-  K  =  ( TopOpen ` fld )
2928cnfldtopon 18308 . . . . . . . . . . . . . . . . 17  |-  K  e.  (TopOn `  CC )
30 resttopon 16908 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
3129, 25, 30sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  S )  e.  (TopOn `  S ) )
32 topontop 16680 . . . . . . . . . . . . . . . 16  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  ( Kt  S )  e.  Top )
3331, 32syl 15 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  S )  e.  Top )
34 toponuni 16681 . . . . . . . . . . . . . . . . 17  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
3531, 34syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  S  =  U. ( Kt  S ) )
3623, 35sseqtrd 3227 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  dom  F  C_  U. ( Kt  S ) )
37 eqid 2296 . . . . . . . . . . . . . . . 16  |-  U. ( Kt  S )  =  U. ( Kt  S )
3837ntrss2 16810 . . . . . . . . . . . . . . 15  |-  ( ( ( Kt  S )  e.  Top  /\ 
dom  F  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  dom  F )  C_  dom  F )
3933, 36, 38syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  dom  F )
4039sselda 3193 . . . . . . . . . . . . 13  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  x  e.  dom  F )
4115, 27, 40dvlem 19262 . . . . . . . . . . . 12  |-  ( ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  /\  z  e.  ( dom  F 
\  { x }
) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  e.  CC )
42 eqid 2296 . . . . . . . . . . . 12  |-  ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )  =  ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )
4341, 42fmptd 5700 . . . . . . . . . . 11  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  -> 
( z  e.  ( dom  F  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) : ( dom 
F  \  { x } ) --> CC )
44 difss 3316 . . . . . . . . . . . 12  |-  ( dom 
F  \  { x } )  C_  dom  F
4544, 27syl5ss 3203 . . . . . . . . . . 11  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  -> 
( dom  F  \  {
x } )  C_  CC )
4629a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  K  e.  (TopOn `  CC ) )
4737ntrss3 16813 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Kt  S )  e.  Top  /\ 
dom  F  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  dom  F )  C_  U. ( Kt  S ) )
4833, 36, 47syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  U. ( Kt  S ) )
4948, 35sseqtr4d 3228 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  S
)
50 restabs 16912 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  (TopOn `  CC )  /\  (
( int `  ( Kt  S ) ) `  dom  F )  C_  S  /\  S  e.  ~P CC )  ->  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) ) )
5146, 49, 10, 50syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) ) )
52 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  S )  e. Perf )
5337ntropn 16802 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Kt  S )  e.  Top  /\ 
dom  F  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  dom  F )  e.  ( Kt  S ) )
5433, 36, 53syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  e.  ( Kt  S ) )
55 eqid 2296 . . . . . . . . . . . . . . . . . 18  |-  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )
5637, 55perfopn 16931 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Kt  S )  e. Perf  /\  ( ( int `  ( Kt  S ) ) `  dom  F )  e.  ( Kt  S ) )  -> 
( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf
)
5752, 54, 56syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf
)
5851, 57eqeltrrd 2371 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf
)
5928cnfldtop 18309 . . . . . . . . . . . . . . . 16  |-  K  e. 
Top
6049, 25sstrd 3202 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  CC )
6129toponunii 16686 . . . . . . . . . . . . . . . . 17  |-  CC  =  U. K
62 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )
6361, 62restperf 16930 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Top  /\  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  CC )  ->  ( ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf  <->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  (
( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) ) ) )
6459, 60, 63sylancr 644 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf  <->  ( ( int `  ( Kt  S ) ) `  dom  F
)  C_  ( ( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) ) ) )
6558, 64mpbid 201 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  (
( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) ) )
6659a1i 10 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  K  e.  Top )
6761lpss3 16892 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Top  /\  dom  F  C_  CC  /\  (
( int `  ( Kt  S ) ) `  dom  F )  C_  dom  F )  ->  ( ( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) )  C_  ( ( limPt `  K
) `  dom  F ) )
6866, 26, 39, 67syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( limPt `  K
) `  ( ( int `  ( Kt  S ) ) `  dom  F
) )  C_  (
( limPt `  K ) `  dom  F ) )
6965, 68sstrd 3202 . . . . . . . . . . . . 13  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  (
( limPt `  K ) `  dom  F ) )
7069sselda 3193 . . . . . . . . . . . 12  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  x  e.  ( ( limPt `  K ) `  dom  F ) )
7161lpdifsn 16891 . . . . . . . . . . . . 13  |-  ( ( K  e.  Top  /\  dom  F  C_  CC )  ->  ( x  e.  ( ( limPt `  K ) `  dom  F )  <->  x  e.  ( ( limPt `  K
) `  ( dom  F 
\  { x }
) ) ) )
7259, 27, 71sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  -> 
( x  e.  ( ( limPt `  K ) `  dom  F )  <->  x  e.  ( ( limPt `  K
) `  ( dom  F 
\  { x }
) ) ) )
7370, 72mpbid 201 . . . . . . . . . . 11  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  x  e.  ( ( limPt `  K ) `  ( dom  F  \  {
x } ) ) )
7443, 45, 73, 28limcmo 19248 . . . . . . . . . 10  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  E* y  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
7574ex 423 . . . . . . . . 9  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  ->  E* y  y  e.  (
( z  e.  ( dom  F  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
76 moanimv 2214 . . . . . . . . 9  |-  ( E* y ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  ->  E* y  y  e.  (
( z  e.  ( dom  F  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
7775, 76sylibr 203 . . . . . . . 8  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  E* y ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
78 eqid 2296 . . . . . . . . . 10  |-  ( Kt  S )  =  ( Kt  S )
7978, 28, 42, 25, 14, 23eldv 19264 . . . . . . . . 9  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( x ( S  _D  F ) y  <-> 
( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
8079mobidv 2191 . . . . . . . 8  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( E* y  x ( S  _D  F
) y  <->  E* y
( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
8177, 80mpbird 223 . . . . . . 7  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  E* y  x ( S  _D  F ) y )
8281alrimiv 1621 . . . . . 6  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  A. x E* y  x ( S  _D  F ) y )
83 reldv 19236 . . . . . . 7  |-  Rel  ( S  _D  F )
84 dffun6 5286 . . . . . . 7  |-  ( Fun  ( S  _D  F
)  <->  ( Rel  ( S  _D  F )  /\  A. x E* y  x ( S  _D  F
) y ) )
8583, 84mpbiran 884 . . . . . 6  |-  ( Fun  ( S  _D  F
)  <->  A. x E* y  x ( S  _D  F ) y )
8682, 85sylibr 203 . . . . 5  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  Fun  ( S  _D  F ) )
87 funfn 5299 . . . . 5  |-  ( Fun  ( S  _D  F
)  <->  ( S  _D  F )  Fn  dom  ( S  _D  F
) )
8886, 87sylib 188 . . . 4  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( S  _D  F
)  Fn  dom  ( S  _D  F ) )
89 vex 2804 . . . . . . 7  |-  y  e. 
_V
9089elrn 4935 . . . . . 6  |-  ( y  e.  ran  ( S  _D  F )  <->  E. x  x ( S  _D  F ) y )
9125, 14, 23dvcl 19265 . . . . . . . 8  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x ( S  _D  F ) y )  ->  y  e.  CC )
9291ex 423 . . . . . . 7  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( x ( S  _D  F ) y  ->  y  e.  CC ) )
9392exlimdv 1626 . . . . . 6  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( E. x  x ( S  _D  F
) y  ->  y  e.  CC ) )
9490, 93syl5bi 208 . . . . 5  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( y  e.  ran  ( S  _D  F
)  ->  y  e.  CC ) )
9594ssrdv 3198 . . . 4  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ran  ( S  _D  F )  C_  CC )
96 df-f 5275 . . . 4  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  ran  ( S  _D  F
)  C_  CC )
)
9788, 95, 96sylanbrc 645 . . 3  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
9897ex 423 . 2  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC ) )
99 f0 5441 . . . 4  |-  (/) : (/) --> CC
100 df-ov 5877 . . . . . 6  |-  ( S  _D  F )  =  (  _D  `  <. S ,  F >. )
101 ndmfv 5568 . . . . . 6  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  (  _D 
`  <. S ,  F >. )  =  (/) )
102100, 101syl5eq 2340 . . . . 5  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( S  _D  F )  =  (/) )
103102dmeqd 4897 . . . . . 6  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  =  dom  (/) )
104 dm0 4908 . . . . . 6  |-  dom  (/)  =  (/)
105103, 104syl6eq 2344 . . . . 5  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  =  (/) )
106102, 105feq12d 5397 . . . 4  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  (/) :
(/) --> CC ) )
10799, 106mpbiri 224 . . 3  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
108107a1d 22 . 2  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC ) )
10998, 108pm2.61i 156 1  |-  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   E*wmo 2157   _Vcvv 2801    \ cdif 3162    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   <.cop 3656   U.cuni 3843   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   dom cdm 4705   ran crn 4706   Rel wrel 4710   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751    - cmin 9053    / cdiv 9439   ↾t crest 13341   TopOpenctopn 13342  ℂfldccnfld 16393   Topctop 16647  TopOnctopon 16648   intcnt 16770   limPtclp 16882  Perfcperf 16883   lim CC climc 19228    _D cdv 19229
This theorem is referenced by:  dvfg  19272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-rest 13343  df-topn 13344  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cnp 16974  df-haus 17059  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator