MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem2 Unicode version

Theorem perfectlem2 20485
Description: Lemma for perfect 20486. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
perfectlem.1  |-  ( ph  ->  A  e.  NN )
perfectlem.2  |-  ( ph  ->  B  e.  NN )
perfectlem.3  |-  ( ph  ->  -.  2  ||  B
)
perfectlem.4  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
Assertion
Ref Expression
perfectlem2  |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )

Proof of Theorem perfectlem2
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectlem.2 . . . 4  |-  ( ph  ->  B  e.  NN )
2 1re 8853 . . . . . 6  |-  1  e.  RR
32a1i 10 . . . . 5  |-  ( ph  ->  1  e.  RR )
4 perfectlem.1 . . . . . . . 8  |-  ( ph  ->  A  e.  NN )
5 perfectlem.3 . . . . . . . 8  |-  ( ph  ->  -.  2  ||  B
)
6 perfectlem.4 . . . . . . . 8  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
74, 1, 5, 6perfectlem1 20484 . . . . . . 7  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
87simp3d 969 . . . . . 6  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN )
98nnred 9777 . . . . 5  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  RR )
101nnred 9777 . . . . 5  |-  ( ph  ->  B  e.  RR )
118nnge1d 9804 . . . . 5  |-  ( ph  ->  1  <_  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
12 2cn 9832 . . . . . . . . . . 11  |-  2  e.  CC
13 exp1 11125 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
1412, 13ax-mp 8 . . . . . . . . . 10  |-  ( 2 ^ 1 )  =  2
15 df-2 9820 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
1614, 15eqtri 2316 . . . . . . . . 9  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
17 2re 9831 . . . . . . . . . . 11  |-  2  e.  RR
1817a1i 10 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR )
19 1z 10069 . . . . . . . . . . 11  |-  1  e.  ZZ
2019a1i 10 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
214peano2nnd 9779 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  1 )  e.  NN )
2221nnzd 10132 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
23 1lt2 9902 . . . . . . . . . . 11  |-  1  <  2
2423a1i 10 . . . . . . . . . 10  |-  ( ph  ->  1  <  2 )
254nnrpd 10405 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
26 ltaddrp 10402 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
272, 25, 26sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( 1  +  A ) )
28 ax-1cn 8811 . . . . . . . . . . . 12  |-  1  e.  CC
294nncnd 9778 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
30 addcom 9014 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  =  ( A  +  1 ) )
3128, 29, 30sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  +  A
)  =  ( A  +  1 ) )
3227, 31breqtrd 4063 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( A  +  1 ) )
33 ltexp2a 11169 . . . . . . . . . 10  |-  ( ( ( 2  e.  RR  /\  1  e.  ZZ  /\  ( A  +  1
)  e.  ZZ )  /\  ( 1  <  2  /\  1  < 
( A  +  1 ) ) )  -> 
( 2 ^ 1 )  <  ( 2 ^ ( A  + 
1 ) ) )
3418, 20, 22, 24, 32, 33syl32anc 1190 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ 1 )  <  ( 2 ^ ( A  + 
1 ) ) )
3516, 34syl5eqbrr 4073 . . . . . . . 8  |-  ( ph  ->  ( 1  +  1 )  <  ( 2 ^ ( A  + 
1 ) ) )
367simp1d 967 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
3736nnred 9777 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  RR )
383, 3, 37ltaddsubd 9388 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  1 )  <  (
2 ^ ( A  +  1 ) )  <->  1  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
3935, 38mpbid 201 . . . . . . 7  |-  ( ph  ->  1  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
40 peano2rem 9129 . . . . . . . . 9  |-  ( ( 2 ^ ( A  +  1 ) )  e.  RR  ->  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR )
4137, 40syl 15 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR )
42 0lt1 9312 . . . . . . . . 9  |-  0  <  1
4342a1i 10 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
44 expgt1 11156 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( A  +  1
)  e.  NN  /\  1  <  2 )  -> 
1  <  ( 2 ^ ( A  + 
1 ) ) )
4518, 21, 24, 44syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 2 ^ ( A  + 
1 ) ) )
46 posdif 9283 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2 ^ ( A  +  1 ) )  e.  RR )  ->  ( 1  < 
( 2 ^ ( A  +  1 ) )  <->  0  <  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
472, 37, 46sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
2 ^ ( A  +  1 ) )  <->  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
4845, 47mpbid 201 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
491nngt0d 9805 . . . . . . . 8  |-  ( ph  ->  0  <  B )
50 ltdiv2OLD 9658 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR  /\  B  e.  RR )  /\  ( 0  <  1  /\  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 )  /\  0  <  B ) )  ->  ( 1  < 
( ( 2 ^ ( A  +  1 ) )  -  1 )  <->  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) ) )
513, 41, 10, 43, 48, 49, 50syl33anc 1197 . . . . . . 7  |-  ( ph  ->  ( 1  <  (
( 2 ^ ( A  +  1 ) )  -  1 )  <-> 
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) ) )
5239, 51mpbid 201 . . . . . 6  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) )
531nncnd 9778 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
5453div1d 9544 . . . . . 6  |-  ( ph  ->  ( B  /  1
)  =  B )
5552, 54breqtrd 4063 . . . . 5  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  B )
563, 9, 10, 11, 55lelttrd 8990 . . . 4  |-  ( ph  ->  1  <  B )
57 eluz2b2 10306 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  <->  ( B  e.  NN  /\  1  < 
B ) )
581, 56, 57sylanbrc 645 . . 3  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
59 fzfid 11051 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... B
)  e.  Fin )
60 sgmss 20360 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B ) )
611, 60syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B
) )
62 ssfi 7099 . . . . . . . . . . . 12  |-  ( ( ( 1 ... B
)  e.  Fin  /\  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B
) )  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
6359, 61, 62syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
6463ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
65 ssrab2 3271 . . . . . . . . . . . . 13  |-  { x  e.  NN  |  x  ||  B }  C_  NN
6665a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { x  e.  NN  |  x  ||  B }  C_  NN )
6766sselda 3193 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  NN )
6867nnred 9777 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  RR )
6967nnnn0d 10034 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  NN0 )
7069nn0ge0d 10037 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  0  <_  k )
71 df-tp 3661 . . . . . . . . . . . 12  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } )
72 prssi 3787 . . . . . . . . . . . . . . 15  |-  ( ( ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN  /\  B  e.  NN )  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
738, 1, 72syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
7473ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
75 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  NN )
7675snssd 3776 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { n }  C_  NN )
7774, 76unssd 3364 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } )  C_  NN )
7871, 77syl5eqss 3235 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  C_  NN )
79 eltpi 3690 . . . . . . . . . . . . 13  |-  ( x  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B ,  n }  ->  ( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  n ) )
807simp2d 968 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )
8180nnzd 10132 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
828nnzd 10132 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  ZZ )
83 dvdsmul2 12567 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  ZZ )  ->  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  (
( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
8481, 82, 83syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
8580nncnd 9778 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  CC )
8680nnne0d 9806 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  =/=  0 )
8753, 85, 86divcan2d 9554 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  B )
8884, 87breqtrd 4063 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  B )
89 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
x  ||  B  <->  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  ||  B ) )
9088, 89syl5ibrcom 213 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  x  ||  B
) )
9190ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  ->  x  ||  B ) )
921nnzd 10132 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  ZZ )
93 iddvds 12558 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ZZ  ->  B  ||  B )
9492, 93syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  ||  B )
95 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
x  ||  B  <->  B  ||  B
) )
9694, 95syl5ibrcom 213 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  =  B  ->  x  ||  B
) )
9796ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  B  ->  x  ||  B ) )
98 simplrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  ||  B )
99 breq1 4042 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
x  ||  B  <->  n  ||  B
) )
10098, 99syl5ibrcom 213 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  n  ->  x  ||  B ) )
10191, 97, 1003jaod 1246 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  n )  ->  x  ||  B
) )
10279, 101syl5 28 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  ->  x  ||  B
) )
103102imp 418 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  x  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  ->  x  ||  B )
10478, 103ssrabdv 3265 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  C_  { x  e.  NN  |  x  ||  B } )
10564, 68, 70, 104fsumless 12270 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  <_  sum_ k  e.  { x  e.  NN  |  x  ||  B } k )
106 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  -.  n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
107 disjsn 3706 . . . . . . . . . . . 12  |-  ( ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { n }
)  =  (/)  <->  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )
108106, 107sylibr 203 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { n }
)  =  (/) )
10971a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } ) )
110 tpfi 7148 . . . . . . . . . . . 12  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  e.  Fin
111110a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  e.  Fin )
11278sselda 3193 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  -> 
k  e.  NN )
113112nncnd 9778 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  -> 
k  e.  CC )
114108, 109, 111, 113fsumsplit 12228 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  =  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  +  sum_ k  e.  { n } k ) )
1158nncnd 9778 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  CC )
116 id 19 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  k  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
117116sumsn 12229 . . . . . . . . . . . . . . 15  |-  ( ( ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  CC )  ->  sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
1188, 115, 117syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
119 id 19 . . . . . . . . . . . . . . . 16  |-  ( k  =  B  ->  k  =  B )
120119sumsn 12229 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  NN  /\  B  e.  CC )  -> 
sum_ k  e.  { B } k  =  B )
1211, 53, 120syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  { B } k  =  B )
122118, 121oveq12d 5892 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  + 
sum_ k  e.  { B } k )  =  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  B
) )
123 incom 3374 . . . . . . . . . . . . . . 15  |-  ( { B }  i^i  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) }  i^i  { B }
)
1249, 55gtned 8970 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
125 disjsn2 3707 . . . . . . . . . . . . . . . 16  |-  ( B  =/=  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( { B }  i^i  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  (/) )
126124, 125syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( { B }  i^i  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  (/) )
127123, 126syl5eqr 2342 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) }  i^i  { B }
)  =  (/) )
128 df-pr 3660 . . . . . . . . . . . . . . 15  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  =  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) }  u.  { B } )
129128a1i 10 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) }  u.  { B } ) )
130 prfi 7147 . . . . . . . . . . . . . . 15  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  e.  Fin
131130a1i 10 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  e.  Fin )
13273sselda 3193 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
)  ->  k  e.  NN )
133132nncnd 9778 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
)  ->  k  e.  CC )
134127, 129, 131, 133fsumsplit 12228 . . . . . . . . . . . . 13  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  =  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) } k  +  sum_ k  e.  { B } k ) )
13585, 53mulcld 8871 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  e.  CC )
13653, 135, 85, 86divdird 9590 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B )  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
13736nncnd 9778 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  CC )
13828a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  1  e.  CC )
139137, 138, 53subdird 9252 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  ( 1  x.  B ) ) )
14053mulid2d 8869 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1  x.  B
)  =  B )
141140oveq2d 5890 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  -  (
1  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) )
142139, 141eqtrd 2328 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) )
143142oveq2d 5890 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B ) )  =  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) ) )
144137, 53mulcld 8871 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  e.  CC )
14553, 144pncan3d 9176 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  x.  B
)  -  B ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
146143, 145eqtrd 2328 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
147146oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
148137, 53, 85, 86divassd 9587 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
149147, 148eqtrd 2328 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
15053, 85, 86divcan3d 9557 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  B )
151150oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  ( ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  =  ( ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  B ) )
152136, 149, 1513eqtr3d 2336 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  ( ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  +  B ) )
153122, 134, 1523eqtr4d 2338 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
154153ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
15575nncnd 9778 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  CC )
156 id 19 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  k  =  n )
157156sumsn 12229 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  n  e.  CC )  -> 
sum_ k  e.  {
n } k  =  n )
158155, 155, 157syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { n } k  =  n )
159154, 158oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  {
n } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n ) )
160114, 159eqtrd 2328 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  =  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n
) )
1614nnnn0d 10034 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN0 )
162 expp1 11126 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  A  e.  NN0 )  -> 
( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
16312, 161, 162sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
164 2nn 9893 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN
165 nnexpcl 11132 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
166164, 161, 165sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2 ^ A
)  e.  NN )
167166nncnd 9778 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2 ^ A
)  e.  CC )
168 mulcom 8839 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ A
)  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
169167, 12, 168sylancl 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
170163, 169eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( 2  x.  ( 2 ^ A ) ) )
171170oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( 2  x.  ( 2 ^ A ) )  x.  B ) )
17212a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  2  e.  CC )
173172, 167, 53mulassd 8874 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 2 ^ A
) )  x.  B
)  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )
174 2prm 12790 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  Prime
175 coprm 12795 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  Prime  /\  B  e.  ZZ )  ->  ( -.  2  ||  B  <->  ( 2  gcd  B )  =  1 ) )
176174, 92, 175sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -.  2  ||  B 
<->  ( 2  gcd  B
)  =  1 ) )
1775, 176mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  gcd  B
)  =  1 )
178 2z 10070 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ZZ
179178a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2  e.  ZZ )
180 rpexp1i 12816 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  A  e.  NN0 )  ->  (
( 2  gcd  B
)  =  1  -> 
( ( 2 ^ A )  gcd  B
)  =  1 ) )
181179, 92, 161, 180syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  gcd 
B )  =  1  ->  ( ( 2 ^ A )  gcd 
B )  =  1 ) )
182177, 181mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2 ^ A )  gcd  B
)  =  1 )
183 sgmmul 20456 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ A )  e.  NN  /\  B  e.  NN  /\  ( ( 2 ^ A )  gcd  B
)  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ A )  x.  B
) )  =  ( ( 1  sigma  ( 2 ^ A ) )  x.  ( 1  sigma  B ) ) )
184138, 166, 1, 182, 183syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( ( 1 
sigma  ( 2 ^ A
) )  x.  (
1  sigma  B ) ) )
185 pncan 9073 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
18629, 28, 185sylancl 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  + 
1 )  -  1 )  =  A )
187186oveq2d 5890 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2 ^ (
( A  +  1 )  -  1 ) )  =  ( 2 ^ A ) )
188187oveq2d 5890 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( 1  sigma 
( 2 ^ A
) ) )
189 1sgm2ppw 20455 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +  1 )  e.  NN  ->  (
1  sigma  ( 2 ^ ( ( A  + 
1 )  -  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
19021, 189syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
191188, 190eqtr3d 2330 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  sigma  ( 2 ^ A ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
192191oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  sigma 
( 2 ^ A
) )  x.  (
1  sigma  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
193184, 6, 1923eqtr3d 2336 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( 2 ^ A
)  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
194171, 173, 1933eqtrd 2332 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
195194oveq1d 5889 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1 
sigma  B ) )  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
196 1nn0 9997 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
197 sgmnncl 20401 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN0  /\  B  e.  NN )  ->  ( 1  sigma  B )  e.  NN )
198196, 1, 197sylancr 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  sigma  B )  e.  NN )
199198nncnd 9778 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  sigma  B )  e.  CC )
200199, 85, 86divcan3d 9557 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) )  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( 1  sigma  B ) )
201195, 148, 2003eqtr3d 2336 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  ( 1  sigma  B ) )
202 sgmval 20396 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  B  e.  NN )  ->  ( 1  sigma  B )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^ c  1 ) )
20328, 1, 202sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  sigma  B )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^ c  1 ) )
204 simpr 447 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  {
x  e.  NN  |  x  ||  B } )
20565, 204sseldi 3191 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  NN )
206205nncnd 9778 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  CC )
207206cxp1d 20069 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  ( k  ^ c  1 )  =  k )
208207sumeq2dv 12192 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^ c  1 )  =  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k )
209201, 203, 2083eqtrrd 2333 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  B } k  =  ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
210209ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
211105, 160, 2103brtr3d 4068 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
21237, 9remulcld 8879 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR )
213212ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR )
21475nnrpd 10405 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  RR+ )
215213, 214ltaddrpd 10435 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n ) )
21675nnred 9777 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  RR )
217213, 216readdcld 8878 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  e.  RR )
218213, 217ltnled 8982 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n )  <->  -.  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
219215, 218mpbid 201 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  -.  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n
)  <_  ( (
2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
220211, 219condan 769 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  n  ||  B ) )  ->  n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
221 elpri 3673 . . . . . . 7  |-  ( n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  n  =  B ) )
222220, 221syl 15 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN  /\  n  ||  B ) )  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )
223222expr 598 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( n 
||  B  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  n  =  B ) ) )
224223ralrimiva 2639 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( n  ||  B  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) )
2253, 56gtned 8970 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  1 )
226225necomd 2542 . . . . . . . . 9  |-  ( ph  ->  1  =/=  B )
227 1nn 9773 . . . . . . . . . . . . 13  |-  1  e.  NN
228227a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  NN )
229 1dvds 12559 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  1  ||  B )
23092, 229syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  1  ||  B )
231 breq1 4042 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
n  ||  B  <->  1  ||  B ) )
232 eqeq1 2302 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  <->  1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
233 eqeq1 2302 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  =  B  <->  1  =  B ) )
234232, 233orbi12d 690 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B )  <->  ( 1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) ) )
235231, 234imbi12d 311 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
( n  ||  B  ->  ( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )  <->  ( 1 
||  B  ->  (
1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) ) ) )
236235rspcv 2893 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  ( A. n  e.  NN  ( n  ||  B  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )  ->  (
1  ||  B  ->  ( 1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) ) ) )
237228, 224, 230, 236syl3c 57 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
238237ord 366 . . . . . . . . . 10  |-  ( ph  ->  ( -.  1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =  B ) )
239238necon1ad 2526 . . . . . . . . 9  |-  ( ph  ->  ( 1  =/=  B  ->  1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
240226, 239mpd 14 . . . . . . . 8  |-  ( ph  ->  1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
241240eqeq2d 2307 . . . . . . 7  |-  ( ph  ->  ( n  =  1  <-> 
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
242241orbi1d 683 . . . . . 6  |-  ( ph  ->  ( ( n  =  1  \/  n  =  B )  <->  ( n  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) )
243242imbi2d 307 . . . . 5  |-  ( ph  ->  ( ( n  ||  B  ->  ( n  =  1  \/  n  =  B ) )  <->  ( n  ||  B  ->  ( n  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) ) )
244243ralbidv 2576 . . . 4  |-  ( ph  ->  ( A. n  e.  NN  ( n  ||  B  ->  ( n  =  1  \/  n  =  B ) )  <->  A. n  e.  NN  ( n  ||  B  ->  ( n  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) ) )
245224, 244mpbird 223 . . 3  |-  ( ph  ->  A. n  e.  NN  ( n  ||  B  -> 
( n  =  1  \/  n  =  B ) ) )
246 isprm2 12782 . . 3  |-  ( B  e.  Prime  <->  ( B  e.  ( ZZ>= `  2 )  /\  A. n  e.  NN  ( n  ||  B  -> 
( n  =  1  \/  n  =  B ) ) ) )
24758, 245, 246sylanbrc 645 . 2  |-  ( ph  ->  B  e.  Prime )
248212ltp1d 9703 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
249 peano2re 9001 . . . . . 6  |-  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  e.  RR )
250212, 249syl 15 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  e.  RR )
251212, 250ltnled 8982 . . . 4  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  <  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <->  -.  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
252248, 251mpbid 201 . . 3  |-  ( ph  ->  -.  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  <_  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
253205nnred 9777 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  RR )
254205nnnn0d 10034 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  NN0 )
255254nn0ge0d 10037 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  0  <_  k
)
256 df-tp 3661 . . . . . . . . . 10  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  =  ( { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { 1 } )
257 snssi 3775 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  { 1 }  C_  NN )
258227, 257mp1i 11 . . . . . . . . . . 11  |-  ( ph  ->  { 1 }  C_  NN )
25973, 258unssd 3364 . . . . . . . . . 10  |-  ( ph  ->  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  u.  {
1 } )  C_  NN )
260256, 259syl5eqss 3235 . . . . . . . . 9  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  NN )
261 eltpi 3690 . . . . . . . . . . 11  |-  ( x  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B ,  1 }  ->  ( x  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  1 ) )
262 breq1 4042 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
x  ||  B  <->  1  ||  B ) )
263230, 262syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  =  1  ->  x  ||  B
) )
26490, 96, 2633jaod 1246 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  1 )  ->  x  ||  B ) )
265261, 264syl5 28 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 }  ->  x  ||  B ) )
266265imp 418 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 } )  ->  x  ||  B )
267260, 266ssrabdv 3265 . . . . . . . 8  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  { x  e.  NN  |  x  ||  B } )
26863, 253, 255, 267fsumless 12270 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 } k  <_  sum_ k  e.  { x  e.  NN  |  x  ||  B } k )
269268adantr 451 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  <_  sum_ k  e.  {
x  e.  NN  |  x  ||  B } k )
270 diveq1 9470 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CC  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  CC  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  =/=  0 )  ->  ( ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  =  1  <->  B  =  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
27153, 85, 86, 270syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  <-> 
B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
272271necon3bid 2494 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =/=  1  <->  B  =/=  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
273272biimpar 471 . . . . . . . . . . . . 13  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  =/=  1 )
274273necomd 2542 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =/=  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
275226adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =/=  B )
276274, 275jca 518 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
1  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  /\  1  =/=  B ) )
277 neanior 2544 . . . . . . . . . . 11  |-  ( ( 1  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  /\  1  =/=  B )  <->  -.  (
1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) )
278276, 277sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  ( 1  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
279 1ex 8849 . . . . . . . . . . 11  |-  1  e.  _V
280279elpr 3671 . . . . . . . . . 10  |-  ( 1  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  <->  ( 1  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
281278, 280sylnibr 296 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  1  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
282 disjsn 3706 . . . . . . . . 9  |-  ( ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { 1 } )  =  (/)  <->  -.  1  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )
283281, 282sylibr 203 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { 1 } )  =  (/) )
284256a1i 10 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  =  ( { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { 1 } ) )
285 tpfi 7148 . . . . . . . . 9  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  e.  Fin
286285a1i 10 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  e.  Fin )
287260adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  NN )
288287sselda 3193 . . . . . . . . 9  |-  ( ( ( ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } )  ->  k  e.  NN )
289288nncnd 9778 . . . . . . . 8  |-  ( ( ( ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } )  ->  k  e.  CC )
290283, 284, 286, 289fsumsplit 12228 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  =  ( sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  { 1 } k ) )
291 id 19 . . . . . . . . . . 11  |-  ( k  =  1  ->  k  =  1 )
292291sumsn 12229 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC )  -> 
sum_ k  e.  {
1 } k  =  1 )
293138, 28, 292sylancl 643 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  {
1 } k  =  1 )
294153, 293oveq12d 5892 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  +  sum_ k  e.  { 1 } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 ) )
295294adantr 451 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  {
1 } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
296290, 295eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
297209adantr 451 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
298269, 296, 2973brtr3d 4068 . . . . 5  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
299298ex 423 . . . 4  |-  ( ph  ->  ( B  =/=  (
( 2 ^ ( A  +  1 ) )  -  1 )  ->  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  <_  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
300299necon1bd 2527 . . 3  |-  ( ph  ->  ( -.  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  ->  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
301252, 300mpd 14 . 2  |-  ( ph  ->  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
302247, 301jca 518 1  |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   {cpr 3654   {ctp 3655   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798   ^cexp 11120   sum_csu 12174    || cdivides 12547    gcd cgcd 12701   Primecprime 12774    ^ c ccxp 19929    sigma csgm 20349
This theorem is referenced by:  perfect  20486
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-sgm 20355
  Copyright terms: Public domain W3C validator