Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Unicode version

Theorem pexmidN 30158
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 30142. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 30156. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a  |-  A  =  ( Atoms `  K )
pexmid.p  |-  .+  =  ( + P `  K
)
pexmid.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pexmidN  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 730 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  K  e.  HL )
2 simplr 731 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  C_  A )
3 pexmid.a . . . . . . 7  |-  A  =  ( Atoms `  K )
4 pexmid.o . . . . . . 7  |-  ._|_  =  ( _|_ P `  K
)
53, 4polssatN 30097 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  C_  A )
65adantr 451 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  X )  C_  A )
7 pexmid.p . . . . . 6  |-  .+  =  ( + P `  K
)
83, 7, 4poldmj1N 30117 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  (  ._|_  `  X )  C_  A )  ->  (  ._|_  `  ( X  .+  (  ._|_  `  X )
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  (  ._|_  `  X ) ) ) )
91, 2, 6, 8syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  ( X  .+  (  ._|_  `  X
) ) )  =  ( (  ._|_  `  X
)  i^i  (  ._|_  `  (  ._|_  `  X ) ) ) )
103, 4pnonsingN 30122 . . . . 5  |-  ( ( K  e.  HL  /\  (  ._|_  `  X )  C_  A )  ->  (
(  ._|_  `  X )  i^i  (  ._|_  `  (  ._|_  `  X ) ) )  =  (/) )
111, 6, 10syl2anc 642 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( (  ._|_  `  X
)  i^i  (  ._|_  `  (  ._|_  `  X ) ) )  =  (/) )
129, 11eqtrd 2315 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  ( X  .+  (  ._|_  `  X
) ) )  =  (/) )
1312fveq2d 5529 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  (  ._|_  `  X ) ) ) )  =  ( 
._|_  `  (/) ) )
14 simpr 447 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  X )
15 eqid 2283 . . . . . . 7  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
163, 4, 15ispsubclN 30126 . . . . . 6  |-  ( K  e.  HL  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
1716ad2antrr 706 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  e.  (
PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
182, 14, 17mpbir2and 888 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  e.  ( PSubCl `  K ) )
193, 4, 15polsubclN 30141 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  e.  ( PSubCl `  K )
)
2019adantr 451 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  X )  e.  ( PSubCl `  K )
)
213, 42polssN 30104 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
2221adantr 451 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
237, 4, 15osumclN 30156 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  ( PSubCl `  K )  /\  (  ._|_  `  X )  e.  ( PSubCl `  K )
)  /\  X  C_  (  ._|_  `  (  ._|_  `  X
) ) )  -> 
( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K
) )
241, 18, 20, 22, 23syl31anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K
) )
254, 15psubcli2N 30128 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K )
)  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  (  ._|_  `  X
) ) ) )  =  ( X  .+  (  ._|_  `  X )
) )
261, 24, 25syl2anc 642 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  (  ._|_  `  X ) ) ) )  =  ( X  .+  (  ._|_  `  X ) ) )
273, 4pol0N 30098 . . 3  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
2827ad2antrr 706 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (/) )  =  A )
2913, 26, 283eqtr3d 2323 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   (/)c0 3455   ` cfv 5255  (class class class)co 5858   Atomscatm 29453   HLchlt 29540   + Pcpadd 29984   _|_ PcpolN 30091   PSubClcpscN 30123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-polarityN 30092  df-psubclN 30124
  Copyright terms: Public domain W3C validator