Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem6N Unicode version

Theorem pexmidlem6N 30786
Description: Lemma for pexmidN 30780. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l  |-  .<_  =  ( le `  K )
pexmidlem.j  |-  .\/  =  ( join `  K )
pexmidlem.a  |-  A  =  ( Atoms `  K )
pexmidlem.p  |-  .+  =  ( + P `  K
)
pexmidlem.o  |-  ._|_  =  ( _|_ P `  K
)
pexmidlem.m  |-  M  =  ( X  .+  {
p } )
Assertion
Ref Expression
pexmidlem6N  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  X )

Proof of Theorem pexmidlem6N
StepHypRef Expression
1 pexmidlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
2 pexmidlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
3 pexmidlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
4 pexmidlem.p . . . . . . . 8  |-  .+  =  ( + P `  K
)
5 pexmidlem.o . . . . . . . 8  |-  ._|_  =  ( _|_ P `  K
)
6 pexmidlem.m . . . . . . . 8  |-  M  =  ( X  .+  {
p } )
71, 2, 3, 4, 5, 6pexmidlem5N 30785 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( (  ._|_  `  X )  i^i  M
)  =  (/) )
873adantr1 1114 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  X )  i^i  M )  =  (/) )
98fveq2d 5545 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  M
) )  =  ( 
._|_  `  (/) ) )
10 simpl1 958 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  K  e.  HL )
113, 5pol0N 30720 . . . . . 6  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
1210, 11syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (/) )  =  A )
139, 12eqtrd 2328 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  M
) )  =  A )
1413ineq1d 3382 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i 
M ) )  i^i 
M )  =  ( A  i^i  M ) )
15 simpl2 959 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  A )
16 simpl3 960 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  p  e.  A )
1716snssd 3776 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  { p }  C_  A )
183, 4paddssat 30625 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  ( X  .+  { p } ) 
C_  A )
1910, 15, 17, 18syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  C_  A )
206, 19syl5eqss 3235 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  C_  A )
2110, 15, 203jca 1132 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( K  e.  HL  /\  X  C_  A  /\  M  C_  A ) )
223, 4sspadd1 30626 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  X  C_  ( X  .+  { p }
) )
2310, 15, 17, 22syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  ( X  .+  {
p } ) )
2423, 6syl6sseqr 3238 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  M )
25 simpr1 961 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )
26 eqid 2296 . . . . . . . . . . 11  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
273, 5, 26ispsubclN 30748 . . . . . . . . . 10  |-  ( K  e.  HL  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
2810, 27syl 15 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
2915, 25, 28mpbir2and 888 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  e.  ( PSubCl `  K )
)
303, 4, 26paddatclN 30760 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  ( PSubCl `  K )  /\  p  e.  A )  ->  ( X  .+  { p }
)  e.  ( PSubCl `  K ) )
3110, 29, 16, 30syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  e.  ( PSubCl `  K ) )
326, 31syl5eqel 2380 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  e.  ( PSubCl `  K )
)
335, 26psubcli2N 30750 . . . . . 6  |-  ( ( K  e.  HL  /\  M  e.  ( PSubCl `  K ) )  -> 
(  ._|_  `  (  ._|_  `  M ) )  =  M )
3410, 32, 33syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (  ._|_  `  M
) )  =  M )
3524, 34jca 518 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  C_  M  /\  (  ._|_  `  (  ._|_  `  M
) )  =  M ) )
363, 5poml4N 30764 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  M  C_  A )  ->  (
( X  C_  M  /\  (  ._|_  `  (  ._|_  `  M ) )  =  M )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  M ) )  i^i 
M )  =  ( 
._|_  `  (  ._|_  `  X
) ) ) )
3721, 35, 36sylc 56 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i 
M ) )  i^i 
M )  =  ( 
._|_  `  (  ._|_  `  X
) ) )
38 sseqin2 3401 . . . 4  |-  ( M 
C_  A  <->  ( A  i^i  M )  =  M )
3920, 38sylib 188 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( A  i^i  M )  =  M )
4014, 37, 393eqtr3rd 2337 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  (  ._|_  `  (  ._|_  `  X ) ) )
4140, 25eqtrd 2328 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   Atomscatm 30075   HLchlt 30162   + Pcpadd 30606   _|_ PcpolN 30713   PSubClcpscN 30745
This theorem is referenced by:  pexmidlem8N  30788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-polarityN 30714  df-psubclN 30746
  Copyright terms: Public domain W3C validator