Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem6N Structured version   Unicode version

Theorem pexmidlem6N 30709
Description: Lemma for pexmidN 30703. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l  |-  .<_  =  ( le `  K )
pexmidlem.j  |-  .\/  =  ( join `  K )
pexmidlem.a  |-  A  =  ( Atoms `  K )
pexmidlem.p  |-  .+  =  ( + P `  K
)
pexmidlem.o  |-  ._|_  =  ( _|_ P `  K
)
pexmidlem.m  |-  M  =  ( X  .+  {
p } )
Assertion
Ref Expression
pexmidlem6N  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  X )

Proof of Theorem pexmidlem6N
StepHypRef Expression
1 pexmidlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
2 pexmidlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
3 pexmidlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
4 pexmidlem.p . . . . . . . 8  |-  .+  =  ( + P `  K
)
5 pexmidlem.o . . . . . . . 8  |-  ._|_  =  ( _|_ P `  K
)
6 pexmidlem.m . . . . . . . 8  |-  M  =  ( X  .+  {
p } )
71, 2, 3, 4, 5, 6pexmidlem5N 30708 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( (  ._|_  `  X )  i^i  M
)  =  (/) )
873adantr1 1116 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  X )  i^i  M )  =  (/) )
98fveq2d 5724 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  M
) )  =  ( 
._|_  `  (/) ) )
10 simpl1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  K  e.  HL )
113, 5pol0N 30643 . . . . . 6  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
1210, 11syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (/) )  =  A )
139, 12eqtrd 2467 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  M
) )  =  A )
1413ineq1d 3533 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i 
M ) )  i^i 
M )  =  ( A  i^i  M ) )
15 simpl2 961 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  A )
16 simpl3 962 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  p  e.  A )
1716snssd 3935 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  { p }  C_  A )
183, 4paddssat 30548 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  ( X  .+  { p } ) 
C_  A )
1910, 15, 17, 18syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  C_  A )
206, 19syl5eqss 3384 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  C_  A )
2110, 15, 203jca 1134 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( K  e.  HL  /\  X  C_  A  /\  M  C_  A ) )
223, 4sspadd1 30549 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  X  C_  ( X  .+  { p }
) )
2310, 15, 17, 22syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  ( X  .+  {
p } ) )
2423, 6syl6sseqr 3387 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  M )
25 simpr1 963 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )
26 eqid 2435 . . . . . . . . . . 11  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
273, 5, 26ispsubclN 30671 . . . . . . . . . 10  |-  ( K  e.  HL  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
2810, 27syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
2915, 25, 28mpbir2and 889 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  e.  ( PSubCl `  K )
)
303, 4, 26paddatclN 30683 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  ( PSubCl `  K )  /\  p  e.  A )  ->  ( X  .+  { p }
)  e.  ( PSubCl `  K ) )
3110, 29, 16, 30syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  e.  ( PSubCl `  K ) )
326, 31syl5eqel 2519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  e.  ( PSubCl `  K )
)
335, 26psubcli2N 30673 . . . . . 6  |-  ( ( K  e.  HL  /\  M  e.  ( PSubCl `  K ) )  -> 
(  ._|_  `  (  ._|_  `  M ) )  =  M )
3410, 32, 33syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (  ._|_  `  M
) )  =  M )
3524, 34jca 519 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  C_  M  /\  (  ._|_  `  (  ._|_  `  M
) )  =  M ) )
363, 5poml4N 30687 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  M  C_  A )  ->  (
( X  C_  M  /\  (  ._|_  `  (  ._|_  `  M ) )  =  M )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  M ) )  i^i 
M )  =  ( 
._|_  `  (  ._|_  `  X
) ) ) )
3721, 35, 36sylc 58 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i 
M ) )  i^i 
M )  =  ( 
._|_  `  (  ._|_  `  X
) ) )
38 sseqin2 3552 . . . 4  |-  ( M 
C_  A  <->  ( A  i^i  M )  =  M )
3920, 38sylib 189 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( A  i^i  M )  =  M )
4014, 37, 393eqtr3rd 2476 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  (  ._|_  `  (  ._|_  `  X ) ) )
4140, 25eqtrd 2467 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   ` cfv 5446  (class class class)co 6073   lecple 13528   joincjn 14393   Atomscatm 29998   HLchlt 30085   + Pcpadd 30529   _|_ PcpolN 30636   PSubClcpscN 30668
This theorem is referenced by:  pexmidlem8N  30711
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-polarityN 30637  df-psubclN 30669
  Copyright terms: Public domain W3C validator