MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Unicode version

Theorem pf1mpf 19435
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q  |-  Q  =  ran  (eval1 `  R )
pf1f.b  |-  B  =  ( Base `  R
)
mpfpf1.q  |-  E  =  ran  ( 1o eval  R
)
Assertion
Ref Expression
pf1mpf  |-  ( F  e.  Q  ->  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E )
Distinct variable groups:    x, B    x, F    x, Q    x, R
Allowed substitution hint:    E( x)

Proof of Theorem pf1mpf
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3  |-  Q  =  ran  (eval1 `  R )
21pf1rcl 19432 . 2  |-  ( F  e.  Q  ->  R  e.  CRing )
3 id 19 . . . 4  |-  ( F  e.  Q  ->  F  e.  Q )
43, 1syl6eleq 2373 . . 3  |-  ( F  e.  Q  ->  F  e.  ran  (eval1 `  R ) )
5 eqid 2283 . . . . . . . 8  |-  (eval1 `  R
)  =  (eval1 `  R
)
6 eqid 2283 . . . . . . . 8  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
7 eqid 2283 . . . . . . . 8  |-  ( R  ^s  B )  =  ( R  ^s  B )
8 pf1f.b . . . . . . . 8  |-  B  =  ( Base `  R
)
95, 6, 7, 8evl1rhm 19412 . . . . . . 7  |-  ( R  e.  CRing  ->  (eval1 `  R
)  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
102, 9syl 15 . . . . . 6  |-  ( F  e.  Q  ->  (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
11 eqid 2283 . . . . . . 7  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
12 eqid 2283 . . . . . . 7  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
1311, 12rhmf 15504 . . . . . 6  |-  ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  -> 
(eval1 `
 R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) ) )
1410, 13syl 15 . . . . 5  |-  ( F  e.  Q  ->  (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) ) )
15 ffn 5389 . . . . 5  |-  ( (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) )  ->  (eval1 `  R
)  Fn  ( Base `  (Poly1 `  R ) ) )
1614, 15syl 15 . . . 4  |-  ( F  e.  Q  ->  (eval1 `  R )  Fn  ( Base `  (Poly1 `  R ) ) )
17 fvelrnb 5570 . . . 4  |-  ( (eval1 `  R )  Fn  ( Base `  (Poly1 `  R ) )  ->  ( F  e. 
ran  (eval1 `  R )  <->  E. y  e.  ( Base `  (Poly1 `  R ) ) ( (eval1 `  R ) `  y )  =  F ) )
1816, 17syl 15 . . 3  |-  ( F  e.  Q  ->  ( F  e.  ran  (eval1 `  R
)  <->  E. y  e.  (
Base `  (Poly1 `  R
) ) ( (eval1 `  R ) `  y
)  =  F ) )
194, 18mpbid 201 . 2  |-  ( F  e.  Q  ->  E. y  e.  ( Base `  (Poly1 `  R ) ) ( (eval1 `  R ) `  y )  =  F )
20 eqid 2283 . . . . . . . 8  |-  ( 1o eval  R )  =  ( 1o eval  R )
21 eqid 2283 . . . . . . . 8  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
22 eqid 2283 . . . . . . . . 9  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
236, 22, 11ply1bas 16274 . . . . . . . 8  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  ( 1o mPoly  R ) )
245, 20, 8, 21, 23evl1val 19411 . . . . . . 7  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( (eval1 `  R
) `  y )  =  ( ( ( 1o eval  R ) `  y )  o.  (
z  e.  B  |->  ( 1o  X.  { z } ) ) ) )
2524coeq1d 4845 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( ( ( 1o eval  R ) `
 y )  o.  ( z  e.  B  |->  ( 1o  X.  {
z } ) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) ) )
26 coass 5191 . . . . . . 7  |-  ( ( ( ( 1o eval  R
) `  y )  o.  ( z  e.  B  |->  ( 1o  X.  {
z } ) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( ( 1o eval  R ) `  y )  o.  (
( z  e.  B  |->  ( 1o  X.  {
z } ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) ) )
27 df1o2 6491 . . . . . . . . . . 11  |-  1o  =  { (/) }
28 fvex 5539 . . . . . . . . . . . 12  |-  ( Base `  R )  e.  _V
298, 28eqeltri 2353 . . . . . . . . . . 11  |-  B  e. 
_V
30 0ex 4150 . . . . . . . . . . 11  |-  (/)  e.  _V
31 eqid 2283 . . . . . . . . . . 11  |-  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) )  =  ( x  e.  ( B  ^m  1o ) 
|->  ( x `  (/) ) )
3227, 29, 30, 31mapsncnv 6814 . . . . . . . . . 10  |-  `' ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) )  =  ( z  e.  B  |->  ( 1o  X.  { z } ) )
3332coeq1i 4843 . . . . . . . . 9  |-  ( `' ( x  e.  ( B  ^m  1o ) 
|->  ( x `  (/) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  ( ( z  e.  B  |->  ( 1o  X.  { z } ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )
3427, 29, 30, 31mapsnf1o2 6815 . . . . . . . . . 10  |-  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) : ( B  ^m  1o )
-1-1-onto-> B
35 f1ococnv1 5502 . . . . . . . . . 10  |-  ( ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) : ( B  ^m  1o ) -1-1-onto-> B  ->  ( `' ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  (  _I  |`  ( B  ^m  1o ) ) )
3634, 35mp1i 11 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( `' ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  (  _I  |`  ( B  ^m  1o ) ) )
3733, 36syl5eqr 2329 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( z  e.  B  |->  ( 1o 
X.  { z } ) )  o.  (
x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  (  _I  |`  ( B  ^m  1o ) ) )
3837coeq2d 4846 . . . . . . 7  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( ( 1o eval  R ) `  y )  o.  (
( z  e.  B  |->  ( 1o  X.  {
z } ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) ) )  =  ( ( ( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) ) )
3926, 38syl5eq 2327 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( ( ( 1o eval  R ) `
 y )  o.  ( z  e.  B  |->  ( 1o  X.  {
z } ) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( ( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) ) )
40 eqid 2283 . . . . . . . 8  |-  ( R  ^s  ( B  ^m  1o ) )  =  ( R  ^s  ( B  ^m  1o ) )
41 eqid 2283 . . . . . . . 8  |-  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )  =  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )
42 simpl 443 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  R  e.  CRing )
43 ovex 5883 . . . . . . . . 9  |-  ( B  ^m  1o )  e. 
_V
4443a1i 10 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( B  ^m  1o )  e.  _V )
45 1on 6486 . . . . . . . . . . 11  |-  1o  e.  On
4620, 8, 21, 40evlrhm 19409 . . . . . . . . . . 11  |-  ( ( 1o  e.  On  /\  R  e.  CRing )  -> 
( 1o eval  R )  e.  ( ( 1o mPoly  R
) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
4745, 46mpan 651 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  ( 1o eval  R )  e.  ( ( 1o mPoly  R ) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
4823, 41rhmf 15504 . . . . . . . . . 10  |-  ( ( 1o eval  R )  e.  ( ( 1o mPoly  R
) RingHom  ( R  ^s  ( B  ^m  1o ) ) )  ->  ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
4947, 48syl 15 . . . . . . . . 9  |-  ( R  e.  CRing  ->  ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
50 ffvelrn 5663 . . . . . . . . 9  |-  ( ( ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  ( B  ^m  1o ) ) )  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
5149, 50sylan 457 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
5240, 8, 41, 42, 44, 51pwselbas 13388 . . . . . . 7  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
) : ( B  ^m  1o ) --> B )
53 fcoi1 5415 . . . . . . 7  |-  ( ( ( 1o eval  R ) `
 y ) : ( B  ^m  1o )
--> B  ->  ( (
( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) )  =  ( ( 1o eval  R
) `  y )
)
5452, 53syl 15 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( ( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) )  =  ( ( 1o eval  R
) `  y )
)
5525, 39, 543eqtrd 2319 . . . . 5  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( 1o eval  R ) `  y
) )
56 ffn 5389 . . . . . . . 8  |-  ( ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  ( B  ^m  1o ) ) )  ->  ( 1o eval  R )  Fn  ( Base `  (Poly1 `  R ) ) )
5749, 56syl 15 . . . . . . 7  |-  ( R  e.  CRing  ->  ( 1o eval  R )  Fn  ( Base `  (Poly1 `  R ) ) )
58 fnfvelrn 5662 . . . . . . 7  |-  ( ( ( 1o eval  R )  Fn  ( Base `  (Poly1 `  R ) )  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ran  ( 1o eval  R ) )
5957, 58sylan 457 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ran  ( 1o eval  R ) )
60 mpfpf1.q . . . . . 6  |-  E  =  ran  ( 1o eval  R
)
6159, 60syl6eleqr 2374 . . . . 5  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  E )
6255, 61eqeltrd 2357 . . . 4  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  e.  E )
63 coeq1 4841 . . . . 5  |-  ( ( (eval1 `  R ) `  y )  =  F  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) ) )
6463eleq1d 2349 . . . 4  |-  ( ( (eval1 `  R ) `  y )  =  F  ->  ( ( ( (eval1 `  R ) `  y )  o.  (
x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E  <->  ( F  o.  ( x  e.  ( B  ^m  1o ) 
|->  ( x `  (/) ) ) )  e.  E ) )
6562, 64syl5ibcom 211 . . 3  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  =  F  -> 
( F  o.  (
x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E ) )
6665rexlimdva 2667 . 2  |-  ( R  e.  CRing  ->  ( E. y  e.  ( Base `  (Poly1 `  R ) ) ( (eval1 `  R ) `  y )  =  F  ->  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E ) )
672, 19, 66sylc 56 1  |-  ( F  e.  Q  ->  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788   (/)c0 3455   {csn 3640    e. cmpt 4077    _I cid 4304   Oncon0 4392    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   1oc1o 6472    ^m cmap 6772   Basecbs 13148    ^s cpws 13347   CRingccrg 15338   RingHom crh 15494   mPoly cmpl 16089   eval cevl 16091  PwSer1cps1 16250  Poly1cpl1 16252  eval1ce1 16254
This theorem is referenced by:  pf1ind  19438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-assa 16053  df-asp 16054  df-ascl 16055  df-psr 16098  df-mvr 16099  df-mpl 16100  df-evls 16101  df-evl 16102  df-opsr 16106  df-psr1 16257  df-ply1 16259  df-evl1 16261
  Copyright terms: Public domain W3C validator