MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Unicode version

Theorem pf1rcl 19922
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q  |-  Q  =  ran  (eval1 `  R )
Assertion
Ref Expression
pf1rcl  |-  ( X  e.  Q  ->  R  e.  CRing )

Proof of Theorem pf1rcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3593 . 2  |-  ( X  e.  Q  ->  -.  Q  =  (/) )
2 pf1rcl.q . . . 4  |-  Q  =  ran  (eval1 `  R )
3 eqid 2404 . . . . . 6  |-  (eval1 `  R
)  =  (eval1 `  R
)
4 eqid 2404 . . . . . 6  |-  ( 1o eval  R )  =  ( 1o eval  R )
5 eqid 2404 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
63, 4, 5evl1fval 19900 . . . . 5  |-  (eval1 `  R
)  =  ( ( x  e.  ( (
Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) )  o.  ( 1o eval  R ) )
76rneqi 5055 . . . 4  |-  ran  (eval1 `  R )  =  ran  ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )
8 rnco2 5336 . . . 4  |-  ran  (
( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )  =  ( ( x  e.  ( (
Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) ) " ran  ( 1o eval  R )
)
92, 7, 83eqtri 2428 . . 3  |-  Q  =  ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )
10 inss2 3522 . . . . 5  |-  ( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  C_  ran  ( 1o eval  R )
11 neq0 3598 . . . . . . 7  |-  ( -. 
ran  ( 1o eval  R
)  =  (/)  <->  E. x  x  e.  ran  ( 1o eval  R ) )
124, 5evlval 19898 . . . . . . . . . . 11  |-  ( 1o eval  R )  =  ( ( 1o evalSub  R ) `  ( Base `  R
) )
1312rneqi 5055 . . . . . . . . . 10  |-  ran  ( 1o eval  R )  =  ran  ( ( 1o evalSub  R ) `
 ( Base `  R
) )
1413mpfrcl 19892 . . . . . . . . 9  |-  ( x  e.  ran  ( 1o eval  R )  ->  ( 1o  e.  _V  /\  R  e.  CRing  /\  ( Base `  R )  e.  (SubRing `  R ) ) )
1514simp2d 970 . . . . . . . 8  |-  ( x  e.  ran  ( 1o eval  R )  ->  R  e.  CRing )
1615exlimiv 1641 . . . . . . 7  |-  ( E. x  x  e.  ran  ( 1o eval  R )  ->  R  e.  CRing )
1711, 16sylbi 188 . . . . . 6  |-  ( -. 
ran  ( 1o eval  R
)  =  (/)  ->  R  e.  CRing )
1817con1i 123 . . . . 5  |-  ( -.  R  e.  CRing  ->  ran  ( 1o eval  R )  =  (/) )
19 sseq0 3619 . . . . 5  |-  ( ( ( dom  ( x  e.  ( ( Base `  R )  ^m  (
( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  C_  ran  ( 1o eval  R )  /\  ran  ( 1o eval  R
)  =  (/) )  -> 
( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  =  (/) )
2010, 18, 19sylancr 645 . . . 4  |-  ( -.  R  e.  CRing  ->  ( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  =  (/) )
21 imadisj 5182 . . . 4  |-  ( ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )  =  (/)  <->  ( dom  ( x  e.  (
( Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) )  i^i  ran  ( 1o eval  R )
)  =  (/) )
2220, 21sylibr 204 . . 3  |-  ( -.  R  e.  CRing  ->  (
( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )  =  (/) )
239, 22syl5eq 2448 . 2  |-  ( -.  R  e.  CRing  ->  Q  =  (/) )
241, 23nsyl2 121 1  |-  ( X  e.  Q  ->  R  e.  CRing )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1547    = wceq 1649    e. wcel 1721   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774    e. cmpt 4226    X. cxp 4835   dom cdm 4837   ran crn 4838   "cima 4840    o. ccom 4841   ` cfv 5413  (class class class)co 6040   1oc1o 6676    ^m cmap 6977   Basecbs 13424   CRingccrg 15616  SubRingcsubrg 15819   evalSub ces 16364   eval cevl 16365  eval1ce1 16528
This theorem is referenced by:  pf1f  19923  pf1mpf  19925  pf1addcl  19926  pf1mulcl  19927  pf1ind  19928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-evls 16375  df-evl 16376  df-evl1 16535
  Copyright terms: Public domain W3C validator