MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1subrg Structured version   Unicode version

Theorem pf1subrg 19961
Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
pf1const.b  |-  B  =  ( Base `  R
)
pf1const.q  |-  Q  =  ran  (eval1 `  R )
Assertion
Ref Expression
pf1subrg  |-  ( R  e.  CRing  ->  Q  e.  (SubRing `  ( R  ^s  B
) ) )

Proof of Theorem pf1subrg
StepHypRef Expression
1 eqid 2436 . . . . . 6  |-  (eval1 `  R
)  =  (eval1 `  R
)
2 eqid 2436 . . . . . 6  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
3 eqid 2436 . . . . . 6  |-  ( R  ^s  B )  =  ( R  ^s  B )
4 pf1const.b . . . . . 6  |-  B  =  ( Base `  R
)
51, 2, 3, 4evl1rhm 19942 . . . . 5  |-  ( R  e.  CRing  ->  (eval1 `  R
)  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
6 eqid 2436 . . . . . 6  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
7 eqid 2436 . . . . . 6  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
86, 7rhmf 15820 . . . . 5  |-  ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  -> 
(eval1 `
 R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) ) )
95, 8syl 16 . . . 4  |-  ( R  e.  CRing  ->  (eval1 `  R
) : ( Base `  (Poly1 `  R ) ) --> ( Base `  ( R  ^s  B ) ) )
10 ffn 5584 . . . 4  |-  ( (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) )  ->  (eval1 `  R
)  Fn  ( Base `  (Poly1 `  R ) ) )
11 fnima 5556 . . . 4  |-  ( (eval1 `  R )  Fn  ( Base `  (Poly1 `  R ) )  ->  ( (eval1 `  R
) " ( Base `  (Poly1 `  R ) ) )  =  ran  (eval1 `  R ) )
129, 10, 113syl 19 . . 3  |-  ( R  e.  CRing  ->  ( (eval1 `  R ) " ( Base `  (Poly1 `  R ) ) )  =  ran  (eval1 `  R ) )
13 pf1const.q . . 3  |-  Q  =  ran  (eval1 `  R )
1412, 13syl6eqr 2486 . 2  |-  ( R  e.  CRing  ->  ( (eval1 `  R ) " ( Base `  (Poly1 `  R ) ) )  =  Q )
152ply1assa 16590 . . . 4  |-  ( R  e.  CRing  ->  (Poly1 `  R
)  e. AssAlg )
16 assarng 16373 . . . 4  |-  ( (Poly1 `  R )  e. AssAlg  ->  (Poly1 `  R )  e.  Ring )
176subrgid 15863 . . . 4  |-  ( (Poly1 `  R )  e.  Ring  -> 
( Base `  (Poly1 `  R
) )  e.  (SubRing `  (Poly1 `  R ) ) )
1815, 16, 173syl 19 . . 3  |-  ( R  e.  CRing  ->  ( Base `  (Poly1 `  R ) )  e.  (SubRing `  (Poly1 `  R ) ) )
19 rhmima 15892 . . 3  |-  ( ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  /\  ( Base `  (Poly1 `  R
) )  e.  (SubRing `  (Poly1 `  R ) ) )  ->  ( (eval1 `  R ) " ( Base `  (Poly1 `  R ) ) )  e.  (SubRing `  ( R  ^s  B ) ) )
205, 18, 19syl2anc 643 . 2  |-  ( R  e.  CRing  ->  ( (eval1 `  R ) " ( Base `  (Poly1 `  R ) ) )  e.  (SubRing `  ( R  ^s  B ) ) )
2114, 20eqeltrrd 2511 1  |-  ( R  e.  CRing  ->  Q  e.  (SubRing `  ( R  ^s  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ran crn 4872   "cima 4874    Fn wfn 5442   -->wf 5443   ` cfv 5447  (class class class)co 6074   Basecbs 13462    ^s cpws 13663   Ringcrg 15653   CRingccrg 15654   RingHom crh 15810  SubRingcsubrg 15857  AssAlgcasa 16362  Poly1cpl1 16564  eval1ce1 16566
This theorem is referenced by:  pf1f  19963  pf1addcl  19966  pf1mulcl  19967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-ofr 6299  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-sup 7439  df-oi 7472  df-card 7819  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-fz 11037  df-fzo 11129  df-seq 11317  df-hash 11612  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-hom 13546  df-cco 13547  df-prds 13664  df-pws 13666  df-0g 13720  df-gsum 13721  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-mhm 14731  df-submnd 14732  df-grp 14805  df-minusg 14806  df-sbg 14807  df-mulg 14808  df-subg 14934  df-ghm 14997  df-cntz 15109  df-cmn 15407  df-abl 15408  df-mgp 15642  df-rng 15656  df-cring 15657  df-ur 15658  df-rnghom 15812  df-subrg 15859  df-lmod 15945  df-lss 16002  df-lsp 16041  df-assa 16365  df-asp 16366  df-ascl 16367  df-psr 16410  df-mvr 16411  df-mpl 16412  df-evls 16413  df-evl 16414  df-opsr 16418  df-psr1 16569  df-ply1 16571  df-evl1 16573
  Copyright terms: Public domain W3C validator