MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Unicode version

Theorem pgpfac1 15331
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.ab  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
pgpfac1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  B ) )
Distinct variable groups:    t,  .0.    t, A    t,  .(+)    t, P   
t, B    t, G    t, S    ph, t    t, K
Allowed substitution hints:    E( t)    O( t)

Proof of Theorem pgpfac1
Dummy variables  s  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 15110 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3 pgpfac1.b . . . 4  |-  B  =  ( Base `  G
)
43subgid 14639 . . 3  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
51, 2, 43syl 18 . 2  |-  ( ph  ->  B  e.  (SubGrp `  G ) )
6 pgpfac1.ab . 2  |-  ( ph  ->  A  e.  B )
7 pgpfac1.n . . 3  |-  ( ph  ->  B  e.  Fin )
8 eleq1 2356 . . . . . . 7  |-  ( s  =  u  ->  (
s  e.  (SubGrp `  G )  <->  u  e.  (SubGrp `  G ) ) )
9 eleq2 2357 . . . . . . 7  |-  ( s  =  u  ->  ( A  e.  s  <->  A  e.  u ) )
108, 9anbi12d 691 . . . . . 6  |-  ( s  =  u  ->  (
( s  e.  (SubGrp `  G )  /\  A  e.  s )  <->  ( u  e.  (SubGrp `  G )  /\  A  e.  u
) ) )
11 eqeq2 2305 . . . . . . . 8  |-  ( s  =  u  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
t )  =  u ) )
1211anbi2d 684 . . . . . . 7  |-  ( s  =  u  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  u ) ) )
1312rexbidv 2577 . . . . . 6  |-  ( s  =  u  ->  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) )
1410, 13imbi12d 311 . . . . 5  |-  ( s  =  u  ->  (
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( (
u  e.  (SubGrp `  G )  /\  A  e.  u )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
1514imbi2d 307 . . . 4  |-  ( s  =  u  ->  (
( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) ) )
16 eleq1 2356 . . . . . . 7  |-  ( s  =  B  ->  (
s  e.  (SubGrp `  G )  <->  B  e.  (SubGrp `  G ) ) )
17 eleq2 2357 . . . . . . 7  |-  ( s  =  B  ->  ( A  e.  s  <->  A  e.  B ) )
1816, 17anbi12d 691 . . . . . 6  |-  ( s  =  B  ->  (
( s  e.  (SubGrp `  G )  /\  A  e.  s )  <->  ( B  e.  (SubGrp `  G )  /\  A  e.  B
) ) )
19 eqeq2 2305 . . . . . . . 8  |-  ( s  =  B  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
t )  =  B ) )
2019anbi2d 684 . . . . . . 7  |-  ( s  =  B  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  B ) ) )
2120rexbidv 2577 . . . . . 6  |-  ( s  =  B  ->  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) )
2218, 21imbi12d 311 . . . . 5  |-  ( s  =  B  ->  (
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( ( B  e.  (SubGrp `  G
)  /\  A  e.  B )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) ) )
2322imbi2d 307 . . . 4  |-  ( s  =  B  ->  (
( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( ph  ->  ( ( B  e.  (SubGrp `  G )  /\  A  e.  B )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) ) ) )
24 bi2.04 350 . . . . . . . . . . 11  |-  ( ( s  C.  u  -> 
( s  e.  (SubGrp `  G )  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )  <->  ( s  e.  (SubGrp `  G )  ->  ( s  C.  u  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) ) )
25 impexp 433 . . . . . . . . . . . 12  |-  ( ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( s  e.  (SubGrp `  G )  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )
2625imbi2i 303 . . . . . . . . . . 11  |-  ( ( s  C.  u  -> 
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( s  C.  u  ->  ( s  e.  (SubGrp `  G )  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) ) )
27 impexp 433 . . . . . . . . . . . 12  |-  ( ( ( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( s  C.  u  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )
2827imbi2i 303 . . . . . . . . . . 11  |-  ( ( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( s  e.  (SubGrp `  G )  ->  (
s  C.  u  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) ) )
2924, 26, 283bitr4i 268 . . . . . . . . . 10  |-  ( ( s  C.  u  -> 
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )
3029imbi2i 303 . . . . . . . . 9  |-  ( (
ph  ->  ( s  C.  u  ->  ( ( s  e.  (SubGrp `  G
)  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  ( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
31 bi2.04 350 . . . . . . . . 9  |-  ( ( s  C.  u  -> 
( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  ( s  C.  u  -> 
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
32 bi2.04 350 . . . . . . . . 9  |-  ( ( s  e.  (SubGrp `  G )  ->  ( ph  ->  ( ( s 
C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  ( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
3330, 31, 323bitr4i 268 . . . . . . . 8  |-  ( ( s  C.  u  -> 
( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( s  e.  (SubGrp `  G )  ->  ( ph  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
3433albii 1556 . . . . . . 7  |-  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  A. s ( s  e.  (SubGrp `  G
)  ->  ( ph  ->  ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
35 df-ral 2561 . . . . . . 7  |-  ( A. s  e.  (SubGrp `  G
) ( ph  ->  ( ( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <->  A. s ( s  e.  (SubGrp `  G )  ->  ( ph  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
36 r19.21v 2643 . . . . . . 7  |-  ( A. s  e.  (SubGrp `  G
) ( ph  ->  ( ( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( ph  ->  A. s  e.  (SubGrp `  G )
( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )
3734, 35, 363bitr2i 264 . . . . . 6  |-  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )
38 psseq1 3276 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  C.  u  <->  s  C.  u ) )
39 eleq2 2357 . . . . . . . . . . 11  |-  ( x  =  s  ->  ( A  e.  x  <->  A  e.  s ) )
4038, 39anbi12d 691 . . . . . . . . . 10  |-  ( x  =  s  ->  (
( x  C.  u  /\  A  e.  x
)  <->  ( s  C.  u  /\  A  e.  s ) ) )
41 ineq2 3377 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  ( S  i^i  y )  =  ( S  i^i  t
) )
4241eqeq1d 2304 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( S  i^i  y
)  =  {  .0.  }  <-> 
( S  i^i  t
)  =  {  .0.  } ) )
43 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  ( S  .(+)  y )  =  ( S  .(+)  t ) )
4443eqeq1d 2304 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( S  .(+)  y )  =  x  <->  ( S  .(+) 
t )  =  x ) )
4542, 44anbi12d 691 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  x ) ) )
4645cbvrexv 2778 . . . . . . . . . . 11  |-  ( E. y  e.  (SubGrp `  G ) ( ( S  i^i  y )  =  {  .0.  }  /\  ( S  .(+)  y )  =  x )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  x ) )
47 eqeq2 2305 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
( S  .(+)  t )  =  x  <->  ( S  .(+) 
t )  =  s ) )
4847anbi2d 684 . . . . . . . . . . . 12  |-  ( x  =  s  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  x )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
4948rexbidv 2577 . . . . . . . . . . 11  |-  ( x  =  s  ->  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  x )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
5046, 49syl5bb 248 . . . . . . . . . 10  |-  ( x  =  s  ->  ( E. y  e.  (SubGrp `  G ) ( ( S  i^i  y )  =  {  .0.  }  /\  ( S  .(+)  y )  =  x )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
5140, 50imbi12d 311 . . . . . . . . 9  |-  ( x  =  s  ->  (
( ( x  C.  u  /\  A  e.  x
)  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  <->  ( (
s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )
5251cbvralv 2777 . . . . . . . 8  |-  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  <->  A. s  e.  (SubGrp `  G )
( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
53 pgpfac1.k . . . . . . . . . 10  |-  K  =  (mrCls `  (SubGrp `  G
) )
54 pgpfac1.s . . . . . . . . . 10  |-  S  =  ( K `  { A } )
55 pgpfac1.o . . . . . . . . . 10  |-  O  =  ( od `  G
)
56 pgpfac1.e . . . . . . . . . 10  |-  E  =  (gEx `  G )
57 pgpfac1.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
58 pgpfac1.l . . . . . . . . . 10  |-  .(+)  =  (
LSSum `  G )
59 pgpfac1.p . . . . . . . . . . 11  |-  ( ph  ->  P pGrp  G )
6059adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  P pGrp  G )
611adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  G  e.  Abel )
627adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  B  e.  Fin )
63 pgpfac1.oe . . . . . . . . . . 11  |-  ( ph  ->  ( O `  A
)  =  E )
6463adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  ( O `  A )  =  E )
65 simprrl 740 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  u  e.  (SubGrp `  G ) )
66 simprrr 741 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  A  e.  u
)
67 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  A. x  e.  (SubGrp `  G ) ( ( x  C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G ) ( ( S  i^i  y )  =  {  .0.  }  /\  ( S  .(+)  y )  =  x ) ) )
6867, 52sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 15330 . . . . . . . . 9  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  u ) )
7069exp32 588 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  (SubGrp `  G )
( ( x  C.  u  /\  A  e.  x
)  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  -> 
( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7152, 70syl5bir 209 . . . . . . 7  |-  ( ph  ->  ( A. s  e.  (SubGrp `  G )
( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  -> 
( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7271a2i 12 . . . . . 6  |-  ( (
ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )  ->  ( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7337, 72sylbi 187 . . . . 5  |-  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  ->  ( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7473a1i 10 . . . 4  |-  ( u  e.  Fin  ->  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  ->  ( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) ) )
7515, 23, 74findcard3 7116 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( ( B  e.  (SubGrp `  G
)  /\  A  e.  B )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) ) )
767, 75mpcom 32 . 2  |-  ( ph  ->  ( ( B  e.  (SubGrp `  G )  /\  A  e.  B
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) )
775, 6, 76mp2and 660 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    i^i cin 3164    C. wpss 3166   {csn 3653   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Fincfn 6879   Basecbs 13164   0gc0g 13416  mrClscmrc 13501   Grpcgrp 14378  SubGrpcsubg 14631   odcod 14856  gExcgex 14857   pGrp cpgp 14858   LSSumclsm 14961   Abelcabel 15106
This theorem is referenced by:  pgpfaclem3  15334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-rpss 6293  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-eqg 14636  df-ga 14760  df-cntz 14809  df-od 14860  df-gex 14861  df-pgp 14862  df-lsm 14963  df-cmn 15107  df-abl 15108
  Copyright terms: Public domain W3C validator