MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Unicode version

Theorem pgpfac1lem5 15330
Description: Lemma for pgpfac1 15331 (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.3  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
Assertion
Ref Expression
pgpfac1lem5  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Distinct variable groups:    t, s,  .0.    A, s, t    .(+) , s, t    P, s, t    B, s, t    G, s, t    U, s, t    S, s, t    ph, s, t    K, s, t
Allowed substitution hints:    E( t, s)    O( t, s)

Proof of Theorem pgpfac1lem5
Dummy variables  b  u  v  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10  |-  ( ph  ->  B  e.  Fin )
2 pwfi 7167 . . . . . . . . . 10  |-  ( B  e.  Fin  <->  ~P B  e.  Fin )
31, 2sylib 188 . . . . . . . . 9  |-  ( ph  ->  ~P B  e.  Fin )
43adantr 451 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  ~P B  e.  Fin )
5 pgpfac1.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
65subgss 14638 . . . . . . . . . . 11  |-  ( v  e.  (SubGrp `  G
)  ->  v  C_  B )
763ad2ant2 977 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  C_  B )
8 vex 2804 . . . . . . . . . . 11  |-  v  e. 
_V
98elpw 3644 . . . . . . . . . 10  |-  ( v  e.  ~P B  <->  v  C_  B )
107, 9sylibr 203 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  e.  ~P B )
1110rabssdv 3266 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  C_  ~P B )
12 ssfi 7099 . . . . . . . 8  |-  ( ( ~P B  e.  Fin  /\ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  C_  ~P B )  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin )
134, 11, 12syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  Fin )
14 finnum 7597 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  dom  card )
1513, 14syl 15 . . . . . 6  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  dom  card )
16 pgpfac1.s . . . . . . . . . 10  |-  S  =  ( K `  { A } )
17 pgpfac1.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Abel )
18 ablgrp 15110 . . . . . . . . . . . . 13  |-  ( G  e.  Abel  ->  G  e. 
Grp )
1917, 18syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Grp )
205subgacs 14668 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
21 acsmre 13570 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (ACS
`  B )  -> 
(SubGrp `  G )  e.  (Moore `  B )
)
2219, 20, 213syl 18 . . . . . . . . . . 11  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
23 pgpfac1.u . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
245subgss 14638 . . . . . . . . . . . . 13  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
2523, 24syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  B )
26 pgpfac1.au . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  U )
2725, 26sseldd 3194 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  B )
28 pgpfac1.k . . . . . . . . . . . 12  |-  K  =  (mrCls `  (SubGrp `  G
) )
2928mrcsncl 13530 . . . . . . . . . . 11  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
3022, 27, 29syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
3116, 30syl5eqel 2380 . . . . . . . . 9  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
3231adantr 451 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  S  e.  (SubGrp `  G )
)
33 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  S  C.  U )
3426snssd 3776 . . . . . . . . . . . . 13  |-  ( ph  ->  { A }  C_  U )
3534, 25sstrd 3202 . . . . . . . . . . . 12  |-  ( ph  ->  { A }  C_  B )
3628mrcssid 13535 . . . . . . . . . . . 12  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  { A }  C_  B )  ->  { A }  C_  ( K `  { A } ) )
3722, 35, 36syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  { A }  C_  ( K `  { A } ) )
3837, 16syl6sseqr 3238 . . . . . . . . . 10  |-  ( ph  ->  { A }  C_  S )
39 snssg 3767 . . . . . . . . . . 11  |-  ( A  e.  B  ->  ( A  e.  S  <->  { A }  C_  S ) )
4027, 39syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  <->  { A }  C_  S
) )
4138, 40mpbird 223 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
4241adantr 451 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  A  e.  S )
43 psseq1 3276 . . . . . . . . . 10  |-  ( v  =  S  ->  (
v  C.  U  <->  S  C.  U ) )
44 eleq2 2357 . . . . . . . . . 10  |-  ( v  =  S  ->  ( A  e.  v  <->  A  e.  S ) )
4543, 44anbi12d 691 . . . . . . . . 9  |-  ( v  =  S  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( S  C.  U  /\  A  e.  S
) ) )
4645rspcev 2897 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  ( S  C.  U  /\  A  e.  S ) )  ->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4732, 33, 42, 46syl12anc 1180 . . . . . . 7  |-  ( (
ph  /\  S  C.  U )  ->  E. v  e.  (SubGrp `  G )
( v  C.  U  /\  A  e.  v
) )
48 rabn0 3487 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  <->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4947, 48sylibr 203 . . . . . 6  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  =/=  (/) )
50 simpr1 961 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
51 simpr2 962 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  =/=  (/) )
5213adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  Fin )
53 ssfi 7099 . . . . . . . . . . 11  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  /\  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  u  e.  Fin )
5452, 50, 53syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  e.  Fin )
55 simpr3 963 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  -> [ C.]  Or  u )
56 fin1a2lem10 8051 . . . . . . . . . 10  |-  ( ( u  =/=  (/)  /\  u  e.  Fin  /\ [ C.]  Or  u
)  ->  U. u  e.  u )
5751, 54, 55, 56syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  u )
5850, 57sseldd 3194 . . . . . . . 8  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
5958ex 423 . . . . . . 7  |-  ( (
ph  /\  S  C.  U )  ->  (
( u  C_  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
)  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
6059alrimiv 1621 . . . . . 6  |-  ( (
ph  /\  S  C.  U )  ->  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
61 zornn0g 8148 . . . . . 6  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  dom  card  /\  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  /\  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )  ->  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w )
6215, 49, 60, 61syl3anc 1182 . . . . 5  |-  ( (
ph  /\  S  C.  U )  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w
)
63 psseq1 3276 . . . . . . . 8  |-  ( v  =  w  ->  (
v  C.  U  <->  w  C.  U ) )
64 eleq2 2357 . . . . . . . 8  |-  ( v  =  w  ->  ( A  e.  v  <->  A  e.  w ) )
6563, 64anbi12d 691 . . . . . . 7  |-  ( v  =  w  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
6665ralrab 2940 . . . . . 6  |-  ( A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6766rexbii 2581 . . . . 5  |-  ( E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6862, 67sylib 188 . . . 4  |-  ( (
ph  /\  S  C.  U )  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6968ex 423 . . 3  |-  ( ph  ->  ( S  C.  U  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
70 pgpfac1.3 . . . . 5  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
71 psseq1 3276 . . . . . . 7  |-  ( v  =  s  ->  (
v  C.  U  <->  s  C.  U ) )
72 eleq2 2357 . . . . . . 7  |-  ( v  =  s  ->  ( A  e.  v  <->  A  e.  s ) )
7371, 72anbi12d 691 . . . . . 6  |-  ( v  =  s  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( s  C.  U  /\  A  e.  s ) ) )
7473ralrab 2940 . . . . 5  |-  ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  A. s  e.  (SubGrp `  G )
( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
7570, 74sylibr 203 . . . 4  |-  ( ph  ->  A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) )
76 r19.29 2696 . . . . 5  |-  ( ( A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )
7773elrab 2936 . . . . . . 7  |-  ( s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  <->  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )
78 ineq2 3377 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  i^i  t )  =  ( S  i^i  v
) )
7978eqeq1d 2304 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  i^i  t
)  =  {  .0.  }  <-> 
( S  i^i  v
)  =  {  .0.  } ) )
80 oveq2 5882 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  .(+)  t )  =  ( S  .(+)  v ) )
8180eqeq1d 2304 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
v )  =  s ) )
8279, 81anbi12d 691 . . . . . . . . . 10  |-  ( t  =  v  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s ) ) )
8382cbvrexv 2778 . . . . . . . . 9  |-  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s ) )
84 simprrl 740 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
s  C.  U )
8584ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  s  C.  U )
86 simpr2 962 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  =  s )
8786psseq1d 3281 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( ( S  .(+)  v )  C.  U 
<->  s  C.  U ) )
8885, 87mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  C.  U
)
89 pssdif 3529 . . . . . . . . . . . . . . 15  |-  ( ( S  .(+)  v )  C.  U  ->  ( U 
\  ( S  .(+)  v ) )  =/=  (/) )
90 n0 3477 . . . . . . . . . . . . . . 15  |-  ( ( U  \  ( S 
.(+)  v ) )  =/=  (/)  <->  E. b  b  e.  ( U  \  ( S  .(+)  v ) ) )
9189, 90sylib 188 . . . . . . . . . . . . . 14  |-  ( ( S  .(+)  v )  C.  U  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
9288, 91syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
93 pgpfac1.o . . . . . . . . . . . . . . . 16  |-  O  =  ( od `  G
)
94 pgpfac1.e . . . . . . . . . . . . . . . 16  |-  E  =  (gEx `  G )
95 pgpfac1.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  G )
96 pgpfac1.l . . . . . . . . . . . . . . . 16  |-  .(+)  =  (
LSSum `  G )
97 pgpfac1.p . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  P pGrp  G )
9897ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  P pGrp  G )
9917ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  G  e.  Abel )
1001ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  B  e.  Fin )
101 pgpfac1.oe . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( O `  A
)  =  E )
102101ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( O `  A )  =  E )
10323ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  U  e.  (SubGrp `  G )
)
10426ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A  e.  U )
105 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  v  e.  (SubGrp `  G )
)
106 simprl1 1000 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  i^i  v )  =  {  .0.  } )
10788adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C.  U )
108107pssssd 3286 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C_  U )
109 simprl3 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
11086adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  =  s )
111 psseq1 3276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( S  .(+)  v )  =  s  ->  ( ( S  .(+)  v )  C.  y  <->  s  C.  y
) )
112111notbid 285 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  .(+)  v )  =  s  ->  ( -.  ( S  .(+)  v ) 
C.  y  <->  -.  s  C.  y ) )
113112imbi2d 307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  .(+)  v )  =  s  ->  ( ( ( y  C.  U  /\  A  e.  y
)  ->  -.  ( S  .(+)  v )  C.  y )  <->  ( (
y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y
) ) )
114113ralbidv 2576 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y ) ) )
115 psseq1 3276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
y  C.  U  <->  w  C.  U ) )
116 eleq2 2357 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  ( A  e.  y  <->  A  e.  w ) )
117115, 116anbi12d 691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  (
( y  C.  U  /\  A  e.  y
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
118 psseq2 3277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
s  C.  y  <->  s  C.  w ) )
119118notbid 285 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  ( -.  s  C.  y  <->  -.  s  C.  w ) )
120117, 119imbi12d 311 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  w  ->  (
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  ( (
w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
121120cbvralv 2777 . . . . . . . . . . . . . . . . . . 19  |-  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
122114, 121syl6bb 252 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) ) )
123110, 122syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( A. y  e.  (SubGrp `  G ) ( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y )  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
124109, 123mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y ) )
125 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  b  e.  ( U  \  ( S  .(+)  v ) ) )
126 eqid 2296 . . . . . . . . . . . . . . . 16  |-  (.g `  G
)  =  (.g `  G
)
12728, 16, 5, 93, 94, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 108, 124, 125, 126pgpfac1lem4 15329 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
128127expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
129128exlimdv 1626 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( E. b  b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
13092, 129mpd 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
1311303exp2 1169 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( ( S  i^i  v )  =  {  .0.  }  ->  ( ( S  .(+)  v )  =  s  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) ) )
132131imp3a 420 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
133132rexlimdva 2680 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
13483, 133syl5bi 208 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
135134imp3a 420 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13677, 135sylan2b 461 . . . . . 6  |-  ( (
ph  /\  s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  (
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
137136rexlimdva 2680 . . . . 5  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13876, 137syl5 28 . . . 4  |-  ( ph  ->  ( ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13975, 138mpand 656 . . 3  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
14069, 139syld 40 . 2  |-  ( ph  ->  ( S  C.  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
141950subg 14658 . . . . . 6  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
14219, 141syl 15 . . . . 5  |-  ( ph  ->  {  .0.  }  e.  (SubGrp `  G ) )
143142adantr 451 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  }  e.  (SubGrp `  G
) )
14495subg0cl 14645 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  e.  S )
14531, 144syl 15 . . . . . . 7  |-  ( ph  ->  .0.  e.  S )
146145snssd 3776 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  S )
147146adantr 451 . . . . 5  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  } 
C_  S )
148 sseqin2 3401 . . . . 5  |-  ( {  .0.  }  C_  S  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } )
149147, 148sylib 188 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  i^i  {  .0.  }
)  =  {  .0.  } )
15096lsmss2 14993 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  {  .0.  }  e.  (SubGrp `  G )  /\  {  .0.  }  C_  S )  ->  ( S  .(+)  {  .0.  } )  =  S )
15131, 142, 146, 150syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( S  .(+)  {  .0.  } )  =  S )
152151eqeq1d 2304 . . . . 5  |-  ( ph  ->  ( ( S  .(+)  {  .0.  } )  =  U  <->  S  =  U
) )
153152biimpar 471 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  .(+)  {  .0.  }
)  =  U )
154 ineq2 3377 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  i^i  t
)  =  ( S  i^i  {  .0.  }
) )
155154eqeq1d 2304 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  i^i  t )  =  {  .0.  }  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } ) )
156 oveq2 5882 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  .(+)  t )  =  ( S  .(+)  {  .0.  } ) )
157156eqeq1d 2304 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  .(+)  t )  =  U  <->  ( S  .(+)  {  .0.  } )  =  U ) )
158155, 157anbi12d 691 . . . . 5  |-  ( t  =  {  .0.  }  ->  ( ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U )  <->  ( ( S  i^i  {  .0.  }
)  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) ) )
159158rspcev 2897 . . . 4  |-  ( ( {  .0.  }  e.  (SubGrp `  G )  /\  ( ( S  i^i  {  .0.  } )  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
160143, 149, 153, 159syl12anc 1180 . . 3  |-  ( (
ph  /\  S  =  U )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
161160ex 423 . 2  |-  ( ph  ->  ( S  =  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
16228mrcsscl 13538 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  { A }  C_  U  /\  U  e.  (SubGrp `  G ) )  -> 
( K `  { A } )  C_  U
)
16322, 34, 23, 162syl3anc 1182 . . . 4  |-  ( ph  ->  ( K `  { A } )  C_  U
)
16416, 163syl5eqss 3235 . . 3  |-  ( ph  ->  S  C_  U )
165 sspss 3288 . . 3  |-  ( S 
C_  U  <->  ( S  C.  U  \/  S  =  U ) )
166164, 165sylib 188 . 2  |-  ( ph  ->  ( S  C.  U  \/  S  =  U
) )
167140, 161, 166mpjaod 370 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    \ cdif 3162    i^i cin 3164    C_ wss 3165    C. wpss 3166   (/)c0 3468   ~Pcpw 3638   {csn 3653   U.cuni 3843   class class class wbr 4039    Or wor 4329   dom cdm 4705   ` cfv 5271  (class class class)co 5874   [ C.] crpss 6292   Fincfn 6879   cardccrd 7584   Basecbs 13164   0gc0g 13416  Moorecmre 13500  mrClscmrc 13501  ACScacs 13503   Grpcgrp 14378  .gcmg 14382  SubGrpcsubg 14631   odcod 14856  gExcgex 14857   pGrp cpgp 14858   LSSumclsm 14961   Abelcabel 15106
This theorem is referenced by:  pgpfac1  15331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-rpss 6293  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-eqg 14636  df-ga 14760  df-cntz 14809  df-od 14860  df-gex 14861  df-pgp 14862  df-lsm 14963  df-cmn 15107  df-abl 15108
  Copyright terms: Public domain W3C validator