MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem3 Unicode version

Theorem pgpfaclem3 15367
Description: Lemma for pgpfac 15368. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b  |-  B  =  ( Base `  G
)
pgpfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
pgpfac.g  |-  ( ph  ->  G  e.  Abel )
pgpfac.p  |-  ( ph  ->  P pGrp  G )
pgpfac.f  |-  ( ph  ->  B  e.  Fin )
pgpfac.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac.a  |-  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  U  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
Assertion
Ref Expression
pgpfaclem3  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
Distinct variable groups:    t, s, C    s, r, t, G    ph, t    B, s, t    U, r, s, t
Allowed substitution hints:    ph( s, r)    B( r)    C( r)    P( t, s, r)

Proof of Theorem pgpfaclem3
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrd0 11465 . . 3  |-  (/)  e. Word  C
2 pgpfac.g . . . . . 6  |-  ( ph  ->  G  e.  Abel )
3 ablgrp 15143 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
4 eqid 2316 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
54dprd0 15315 . . . . . 6  |-  ( G  e.  Grp  ->  ( G dom DProd  (/)  /\  ( G DProd  (/) )  =  { ( 0g `  G ) } ) )
62, 3, 53syl 18 . . . . 5  |-  ( ph  ->  ( G dom DProd  (/)  /\  ( G DProd 
(/) )  =  {
( 0g `  G
) } ) )
76adantr 451 . . . 4  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  ( G dom DProd  (/)  /\  ( G DProd  (/) )  =  { ( 0g `  G ) } ) )
8 pgpfac.u . . . . . . . . 9  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
94subg0cl 14678 . . . . . . . . 9  |-  ( U  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  U
)
108, 9syl 15 . . . . . . . 8  |-  ( ph  ->  ( 0g `  G
)  e.  U )
1110adantr 451 . . . . . . 7  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  ( 0g `  G )  e.  U )
12 eqid 2316 . . . . . . . . . . 11  |-  ( Gs  U )  =  ( Gs  U )
1312subgbas 14674 . . . . . . . . . 10  |-  ( U  e.  (SubGrp `  G
)  ->  U  =  ( Base `  ( Gs  U
) ) )
148, 13syl 15 . . . . . . . . 9  |-  ( ph  ->  U  =  ( Base `  ( Gs  U ) ) )
1514adantr 451 . . . . . . . 8  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  U  =  ( Base `  ( Gs  U ) ) )
1612subggrp 14673 . . . . . . . . . . 11  |-  ( U  e.  (SubGrp `  G
)  ->  ( Gs  U
)  e.  Grp )
178, 16syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( Gs  U )  e.  Grp )
18 grpmnd 14543 . . . . . . . . . 10  |-  ( ( Gs  U )  e.  Grp  ->  ( Gs  U )  e.  Mnd )
19 eqid 2316 . . . . . . . . . . 11  |-  ( Base `  ( Gs  U ) )  =  ( Base `  ( Gs  U ) )
20 eqid 2316 . . . . . . . . . . 11  |-  (gEx `  ( Gs  U ) )  =  (gEx `  ( Gs  U
) )
2119, 20gex1 14951 . . . . . . . . . 10  |-  ( ( Gs  U )  e.  Mnd  ->  ( (gEx `  ( Gs  U ) )  =  1  <->  ( Base `  ( Gs  U ) )  ~~  1o ) )
2217, 18, 213syl 18 . . . . . . . . 9  |-  ( ph  ->  ( (gEx `  ( Gs  U ) )  =  1  <->  ( Base `  ( Gs  U ) )  ~~  1o ) )
2322biimpa 470 . . . . . . . 8  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  ( Base `  ( Gs  U ) )  ~~  1o )
2415, 23eqbrtrd 4080 . . . . . . 7  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  U  ~~  1o )
25 en1eqsn 7133 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  U  /\  U  ~~  1o )  ->  U  =  { ( 0g `  G ) } )
2611, 24, 25syl2anc 642 . . . . . 6  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  U  =  { ( 0g `  G ) } )
2726eqeq2d 2327 . . . . 5  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  (
( G DProd  (/) )  =  U  <->  ( G DProd  (/) )  =  { ( 0g `  G ) } ) )
2827anbi2d 684 . . . 4  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  (
( G dom DProd  (/)  /\  ( G DProd 
(/) )  =  U )  <->  ( G dom DProd  (/)  /\  ( G DProd  (/) )  =  { ( 0g `  G ) } ) ) )
297, 28mpbird 223 . . 3  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  ( G dom DProd  (/)  /\  ( G DProd  (/) )  =  U ) )
30 breq2 4064 . . . . 5  |-  ( s  =  (/)  ->  ( G dom DProd  s  <->  G dom DProd  (/) ) )
31 oveq2 5908 . . . . . 6  |-  ( s  =  (/)  ->  ( G DProd 
s )  =  ( G DProd  (/) ) )
3231eqeq1d 2324 . . . . 5  |-  ( s  =  (/)  ->  ( ( G DProd  s )  =  U  <->  ( G DProd  (/) )  =  U ) )
3330, 32anbi12d 691 . . . 4  |-  ( s  =  (/)  ->  ( ( G dom DProd  s  /\  ( G DProd  s )  =  U )  <->  ( G dom DProd  (/)  /\  ( G DProd  (/) )  =  U ) ) )
3433rspcev 2918 . . 3  |-  ( (
(/)  e. Word  C  /\  ( G dom DProd  (/)  /\  ( G DProd  (/) )  =  U ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  U ) )
351, 29, 34sylancr 644 . 2  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =  1 )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  U ) )
3612subgabl 15181 . . . . . 6  |-  ( ( G  e.  Abel  /\  U  e.  (SubGrp `  G )
)  ->  ( Gs  U
)  e.  Abel )
372, 8, 36syl2anc 642 . . . . 5  |-  ( ph  ->  ( Gs  U )  e.  Abel )
38 pgpfac.f . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
39 pgpfac.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
4039subgss 14671 . . . . . . . . 9  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
418, 40syl 15 . . . . . . . 8  |-  ( ph  ->  U  C_  B )
42 ssfi 7126 . . . . . . . 8  |-  ( ( B  e.  Fin  /\  U  C_  B )  ->  U  e.  Fin )
4338, 41, 42syl2anc 642 . . . . . . 7  |-  ( ph  ->  U  e.  Fin )
4414, 43eqeltrrd 2391 . . . . . 6  |-  ( ph  ->  ( Base `  ( Gs  U ) )  e. 
Fin )
4519, 20gexcl2 14949 . . . . . 6  |-  ( ( ( Gs  U )  e.  Grp  /\  ( Base `  ( Gs  U ) )  e. 
Fin )  ->  (gEx `  ( Gs  U ) )  e.  NN )
4617, 44, 45syl2anc 642 . . . . 5  |-  ( ph  ->  (gEx `  ( Gs  U
) )  e.  NN )
47 eqid 2316 . . . . . 6  |-  ( od
`  ( Gs  U ) )  =  ( od
`  ( Gs  U ) )
4819, 20, 47gexex 15194 . . . . 5  |-  ( ( ( Gs  U )  e.  Abel  /\  (gEx `  ( Gs  U
) )  e.  NN )  ->  E. x  e.  (
Base `  ( Gs  U
) ) ( ( od `  ( Gs  U ) ) `  x
)  =  (gEx `  ( Gs  U ) ) )
4937, 46, 48syl2anc 642 . . . 4  |-  ( ph  ->  E. x  e.  (
Base `  ( Gs  U
) ) ( ( od `  ( Gs  U ) ) `  x
)  =  (gEx `  ( Gs  U ) ) )
5049adantr 451 . . 3  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  ->  E. x  e.  ( Base `  ( Gs  U ) ) ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) )
51 eqid 2316 . . . . . . 7  |-  (mrCls `  (SubGrp `  ( Gs  U ) ) )  =  (mrCls `  (SubGrp `  ( Gs  U
) ) )
52 eqid 2316 . . . . . . 7  |-  ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  =  ( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `  {
x } )
53 eqid 2316 . . . . . . 7  |-  ( 0g
`  ( Gs  U ) )  =  ( 0g
`  ( Gs  U ) )
54 eqid 2316 . . . . . . 7  |-  ( LSSum `  ( Gs  U ) )  =  ( LSSum `  ( Gs  U
) )
55 pgpfac.p . . . . . . . . 9  |-  ( ph  ->  P pGrp  G )
56 subgpgp 14957 . . . . . . . . 9  |-  ( ( P pGrp  G  /\  U  e.  (SubGrp `  G )
)  ->  P pGrp  ( Gs  U ) )
5755, 8, 56syl2anc 642 . . . . . . . 8  |-  ( ph  ->  P pGrp  ( Gs  U ) )
5857ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  ->  P pGrp  ( Gs  U ) )
5937ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  -> 
( Gs  U )  e.  Abel )
6044ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  -> 
( Base `  ( Gs  U
) )  e.  Fin )
61 simprr 733 . . . . . . 7  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  -> 
( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) )
62 simprl 732 . . . . . . 7  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  ->  x  e.  ( Base `  ( Gs  U ) ) )
6351, 52, 19, 47, 20, 53, 54, 58, 59, 60, 61, 62pgpfac1 15364 . . . . . 6  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  ->  E. w  e.  (SubGrp `  ( Gs  U ) ) ( ( ( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `  {
x } )  i^i  w )  =  {
( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) )
64 pgpfac.c . . . . . . . . 9  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
652ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  G  e.  Abel )
6655ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  P pGrp  G )
6738ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  B  e.  Fin )
688ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  U  e.  (SubGrp `  G )
)
69 pgpfac.a . . . . . . . . . 10  |-  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  U  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
7069ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  A. t  e.  (SubGrp `  G )
( t  C.  U  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) ) )
71 simpllr 735 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  (gEx `  ( Gs  U ) )  =/=  1 )
72 simplrl 736 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  x  e.  ( Base `  ( Gs  U ) ) )
7368, 13syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  U  =  ( Base `  ( Gs  U ) ) )
7472, 73eleqtrrd 2393 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  x  e.  U )
75 simplrr 737 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  (
( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) )
76 simprl 732 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  w  e.  (SubGrp `  ( Gs  U
) ) )
77 simprrl 740 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  (
( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `
 { x }
)  i^i  w )  =  { ( 0g `  ( Gs  U ) ) } )
78 simprrr 741 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  (
( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `
 { x }
) ( LSSum `  ( Gs  U ) ) w )  =  ( Base `  ( Gs  U ) ) )
7978, 73eqtr4d 2351 . . . . . . . . 9  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  (
( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `
 { x }
) ( LSSum `  ( Gs  U ) ) w )  =  U )
8039, 64, 65, 66, 67, 68, 70, 12, 51, 47, 20, 53, 54, 71, 74, 75, 76, 77, 79pgpfaclem2 15366 . . . . . . . 8  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  ( w  e.  (SubGrp `  ( Gs  U ) )  /\  ( ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } )  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) ) ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  U ) )
8180expr 598 . . . . . . 7  |-  ( ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  ( x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  /\  w  e.  (SubGrp `  ( Gs  U ) ) )  ->  ( ( ( ( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `
 { x }
)  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) ) )
8281rexlimdva 2701 . . . . . 6  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  -> 
( E. w  e.  (SubGrp `  ( Gs  U
) ) ( ( ( (mrCls `  (SubGrp `  ( Gs  U ) ) ) `
 { x }
)  i^i  w )  =  { ( 0g `  ( Gs  U ) ) }  /\  ( ( (mrCls `  (SubGrp `  ( Gs  U
) ) ) `  { x } ) ( LSSum `  ( Gs  U
) ) w )  =  ( Base `  ( Gs  U ) ) )  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) ) )
8363, 82mpd 14 . . . . 5  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  (
x  e.  ( Base `  ( Gs  U ) )  /\  ( ( od `  ( Gs  U ) ) `  x )  =  (gEx
`  ( Gs  U ) ) ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
8483expr 598 . . . 4  |-  ( ( ( ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  /\  x  e.  ( Base `  ( Gs  U ) ) )  ->  ( ( ( od `  ( Gs  U ) ) `  x
)  =  (gEx `  ( Gs  U ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  U ) ) )
8584rexlimdva 2701 . . 3  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  ->  ( E. x  e.  ( Base `  ( Gs  U ) ) ( ( od
`  ( Gs  U ) ) `  x )  =  (gEx `  ( Gs  U ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  U ) ) )
8650, 85mpd 14 . 2  |-  ( (
ph  /\  (gEx `  ( Gs  U ) )  =/=  1 )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  U ) )
8735, 86pm2.61dane 2557 1  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   E.wrex 2578   {crab 2581    i^i cin 3185    C_ wss 3186    C. wpss 3187   (/)c0 3489   {csn 3674   class class class wbr 4060   dom cdm 4726   ran crn 4727   ` cfv 5292  (class class class)co 5900   1oc1o 6514    ~~ cen 6903   Fincfn 6906   1c1 8783   NNcn 9791  Word cword 11450   Basecbs 13195   ↾s cress 13196   0gc0g 13449  mrClscmrc 13534   Mndcmnd 14410   Grpcgrp 14411  SubGrpcsubg 14664   odcod 14889  gExcgex 14890   pGrp cpgp 14891   LSSumclsm 14994   Abelcabel 15139  CycGrpccyg 15213   DProd cdprd 15280
This theorem is referenced by:  pgpfac  15368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-disj 4031  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-tpos 6276  df-rpss 6319  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-omul 6526  df-er 6702  df-ec 6704  df-qs 6708  df-map 6817  df-ixp 6861  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-sup 7239  df-oi 7270  df-card 7617  df-acn 7620  df-cda 7839  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-fz 10830  df-fzo 10918  df-fl 10972  df-mod 11021  df-seq 11094  df-exp 11152  df-fac 11336  df-bc 11363  df-hash 11385  df-word 11456  df-concat 11457  df-s1 11458  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-clim 12009  df-sum 12206  df-dvds 12579  df-gcd 12733  df-prm 12806  df-pc 12937  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-0g 13453  df-gsum 13454  df-mre 13537  df-mrc 13538  df-acs 13540  df-mnd 14416  df-mhm 14464  df-submnd 14465  df-grp 14538  df-minusg 14539  df-sbg 14540  df-mulg 14541  df-subg 14667  df-eqg 14669  df-ghm 14730  df-gim 14772  df-ga 14793  df-cntz 14842  df-oppg 14868  df-od 14893  df-gex 14894  df-pgp 14895  df-lsm 14996  df-pj1 14997  df-cmn 15140  df-abl 15141  df-cyg 15214  df-dprd 15282
  Copyright terms: Public domain W3C validator