MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibnd Unicode version

Theorem phibnd 12855
Description: A slightly tighter bound on the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibnd  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  <_  ( N  -  1 ) )

Proof of Theorem phibnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fzfi 11050 . . . 4  |-  ( 1 ... ( N  - 
1 ) )  e. 
Fin
2 phibndlem 12854 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
3 ssdomg 6923 . . . 4  |-  ( ( 1 ... ( N  -  1 ) )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... ( N  -  1 ) )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... ( N  - 
1 ) ) ) )
41, 2, 3mpsyl 59 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... ( N  - 
1 ) ) )
5 fzfi 11050 . . . . 5  |-  ( 1 ... N )  e. 
Fin
6 ssrab2 3271 . . . . 5  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
7 ssfi 7099 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N ) )  ->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin )
85, 6, 7mp2an 653 . . . 4  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin
9 hashdom 11377 . . . 4  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... ( N  - 
1 ) )  e. 
Fin )  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... ( N  - 
1 ) ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... ( N  -  1 ) ) ) )
108, 1, 9mp2an 653 . . 3  |-  ( (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... ( N  - 
1 ) ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... ( N  -  1 ) ) )
114, 10sylibr 203 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <_  ( # `  (
1 ... ( N  - 
1 ) ) ) )
12 eluz2b2 10306 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
1312simplbi 446 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
14 phival 12851 . . 3  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
1513, 14syl 15 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
16 nnm1nn0 10021 . . . 4  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
17 hashfz1 11361 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  -  1 ) ) )  =  ( N  -  1 ) )
1813, 16, 173syl 18 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  (
1 ... ( N  - 
1 ) ) )  =  ( N  - 
1 ) )
1918eqcomd 2301 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  =  ( # `  (
1 ... ( N  - 
1 ) ) ) )
2011, 15, 193brtr4d 4069 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  <_  ( N  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   {crab 2560    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874    ~<_ cdom 6877   Fincfn 6879   1c1 8754    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   2c2 9811   NN0cn0 9981   ZZ>=cuz 10246   ...cfz 10798   #chash 11353    gcd cgcd 12701   phicphi 12848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-phi 12850
  Copyright terms: Public domain W3C validator