MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllmhm Structured version   Unicode version

Theorem phllmhm 16863
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
phllmhm.g  |-  G  =  ( x  e.  V  |->  ( x  .,  A
) )
Assertion
Ref Expression
phllmhm  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  G  e.  ( W LMHom  (ringLMod `  F
) ) )
Distinct variable groups:    x, A    x, 
.,    x, V    x, W
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem phllmhm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . 5  |-  V  =  ( Base `  W
)
2 phlsrng.f . . . . 5  |-  F  =  (Scalar `  W )
3 phllmhm.h . . . . 5  |-  .,  =  ( .i `  W )
4 eqid 2436 . . . . 5  |-  ( 0g
`  W )  =  ( 0g `  W
)
5 eqid 2436 . . . . 5  |-  ( * r `  F )  =  ( * r `
 F )
6 eqid 2436 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
71, 2, 3, 4, 5, 6isphl 16859 . . . 4  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  F  e.  *Ring  /\  A. y  e.  V  (
( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
y  .,  y )  =  ( 0g `  F )  ->  y  =  ( 0g `  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `  (
y  .,  x )
)  =  ( x 
.,  y ) ) ) )
87simp3bi 974 . . 3  |-  ( W  e.  PreHil  ->  A. y  e.  V  ( ( x  e.  V  |->  ( x  .,  y ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( y  .,  y
)  =  ( 0g
`  F )  -> 
y  =  ( 0g
`  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `
 ( y  .,  x ) )  =  ( x  .,  y
) ) )
9 simp1 957 . . . 4  |-  ( ( ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
y  .,  y )  =  ( 0g `  F )  ->  y  =  ( 0g `  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `  (
y  .,  x )
)  =  ( x 
.,  y ) )  ->  ( x  e.  V  |->  ( x  .,  y ) )  e.  ( W LMHom  (ringLMod `  F
) ) )
109ralimi 2781 . . 3  |-  ( A. y  e.  V  (
( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
y  .,  y )  =  ( 0g `  F )  ->  y  =  ( 0g `  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `  (
y  .,  x )
)  =  ( x 
.,  y ) )  ->  A. y  e.  V  ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
) )
118, 10syl 16 . 2  |-  ( W  e.  PreHil  ->  A. y  e.  V  ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
) )
12 oveq2 6089 . . . . . 6  |-  ( y  =  A  ->  (
x  .,  y )  =  ( x  .,  A ) )
1312mpteq2dv 4296 . . . . 5  |-  ( y  =  A  ->  (
x  e.  V  |->  ( x  .,  y ) )  =  ( x  e.  V  |->  ( x 
.,  A ) ) )
14 phllmhm.g . . . . 5  |-  G  =  ( x  e.  V  |->  ( x  .,  A
) )
1513, 14syl6eqr 2486 . . . 4  |-  ( y  =  A  ->  (
x  e.  V  |->  ( x  .,  y ) )  =  G )
1615eleq1d 2502 . . 3  |-  ( y  =  A  ->  (
( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  <->  G  e.  ( W LMHom  (ringLMod `  F )
) ) )
1716rspccva 3051 . 2  |-  ( ( A. y  e.  V  ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  A  e.  V )  ->  G  e.  ( W LMHom  (ringLMod `  F
) ) )
1811, 17sylan 458 1  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  G  e.  ( W LMHom  (ringLMod `  F
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   Basecbs 13469   * rcstv 13531  Scalarcsca 13532   .icip 13534   0gc0g 13723   *Ringcsr 15932   LMHom clmhm 16095   LVecclvec 16174  ringLModcrglmod 16241   PreHilcphl 16855
This theorem is referenced by:  ipcl  16864  ip0l  16867  ipdir  16870  ipass  16876
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4338
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-iota 5418  df-fv 5462  df-ov 6084  df-phl 16857
  Copyright terms: Public domain W3C validator