MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllmhm Unicode version

Theorem phllmhm 16552
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
phllmhm.g  |-  G  =  ( x  e.  V  |->  ( x  .,  A
) )
Assertion
Ref Expression
phllmhm  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  G  e.  ( W LMHom  (ringLMod `  F
) ) )
Distinct variable groups:    x, A    x, 
.,    x, V    x, W
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem phllmhm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . 5  |-  V  =  ( Base `  W
)
2 phlsrng.f . . . . 5  |-  F  =  (Scalar `  W )
3 phllmhm.h . . . . 5  |-  .,  =  ( .i `  W )
4 eqid 2296 . . . . 5  |-  ( 0g
`  W )  =  ( 0g `  W
)
5 eqid 2296 . . . . 5  |-  ( * r `  F )  =  ( * r `
 F )
6 eqid 2296 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
71, 2, 3, 4, 5, 6isphl 16548 . . . 4  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  F  e.  *Ring  /\  A. y  e.  V  (
( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
y  .,  y )  =  ( 0g `  F )  ->  y  =  ( 0g `  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `  (
y  .,  x )
)  =  ( x 
.,  y ) ) ) )
87simp3bi 972 . . 3  |-  ( W  e.  PreHil  ->  A. y  e.  V  ( ( x  e.  V  |->  ( x  .,  y ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( y  .,  y
)  =  ( 0g
`  F )  -> 
y  =  ( 0g
`  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `
 ( y  .,  x ) )  =  ( x  .,  y
) ) )
9 simp1 955 . . . 4  |-  ( ( ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
y  .,  y )  =  ( 0g `  F )  ->  y  =  ( 0g `  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `  (
y  .,  x )
)  =  ( x 
.,  y ) )  ->  ( x  e.  V  |->  ( x  .,  y ) )  e.  ( W LMHom  (ringLMod `  F
) ) )
109ralimi 2631 . . 3  |-  ( A. y  e.  V  (
( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
y  .,  y )  =  ( 0g `  F )  ->  y  =  ( 0g `  W ) )  /\  A. x  e.  V  ( ( * r `  F ) `  (
y  .,  x )
)  =  ( x 
.,  y ) )  ->  A. y  e.  V  ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
) )
118, 10syl 15 . 2  |-  ( W  e.  PreHil  ->  A. y  e.  V  ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
) )
12 oveq2 5882 . . . . . 6  |-  ( y  =  A  ->  (
x  .,  y )  =  ( x  .,  A ) )
1312mpteq2dv 4123 . . . . 5  |-  ( y  =  A  ->  (
x  e.  V  |->  ( x  .,  y ) )  =  ( x  e.  V  |->  ( x 
.,  A ) ) )
14 phllmhm.g . . . . 5  |-  G  =  ( x  e.  V  |->  ( x  .,  A
) )
1513, 14syl6eqr 2346 . . . 4  |-  ( y  =  A  ->  (
x  e.  V  |->  ( x  .,  y ) )  =  G )
1615eleq1d 2362 . . 3  |-  ( y  =  A  ->  (
( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  <->  G  e.  ( W LMHom  (ringLMod `  F )
) ) )
1716rspccva 2896 . 2  |-  ( ( A. y  e.  V  ( x  e.  V  |->  ( x  .,  y
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  A  e.  V )  ->  G  e.  ( W LMHom  (ringLMod `  F
) ) )
1811, 17sylan 457 1  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  G  e.  ( W LMHom  (ringLMod `  F
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   Basecbs 13164   * rcstv 13226  Scalarcsca 13227   .icip 13229   0gc0g 13416   *Ringcsr 15625   LMHom clmhm 15792   LVecclvec 15871  ringLModcrglmod 15938   PreHilcphl 16544
This theorem is referenced by:  ipcl  16553  ip0l  16556  ipdir  16559  ipass  16565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-iota 5235  df-fv 5279  df-ov 5877  df-phl 16546
  Copyright terms: Public domain W3C validator