MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Unicode version

Theorem phop 21396
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2  |-  G  =  ( +v `  U
)
phop.4  |-  S  =  ( .s OLD `  U
)
phop.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
phop  |-  ( U  e.  CPreHil OLD  ->  U  = 
<. <. G ,  S >. ,  N >. )

Proof of Theorem phop
StepHypRef Expression
1 phrel 21393 . . 3  |-  Rel  CPreHil OLD
2 1st2nd 6166 . . 3  |-  ( ( Rel  CPreHil OLD  /\  U  e.  CPreHil
OLD )  ->  U  =  <. ( 1st `  U
) ,  ( 2nd `  U ) >. )
31, 2mpan 651 . 2  |-  ( U  e.  CPreHil OLD  ->  U  = 
<. ( 1st `  U
) ,  ( 2nd `  U ) >. )
4 phop.6 . . . . 5  |-  N  =  ( normCV `  U )
54nmcvfval 21163 . . . 4  |-  N  =  ( 2nd `  U
)
65opeq2i 3800 . . 3  |-  <. ( 1st `  U ) ,  N >.  =  <. ( 1st `  U ) ,  ( 2nd `  U
) >.
7 phnv 21392 . . . . 5  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
8 eqid 2283 . . . . . 6  |-  ( 1st `  U )  =  ( 1st `  U )
98nvvc 21171 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
10 vcrel 21103 . . . . . . 7  |-  Rel  CVec OLD
11 1st2nd 6166 . . . . . . 7  |-  ( ( Rel  CVec OLD  /\  ( 1st `  U )  e. 
CVec OLD )  ->  ( 1st `  U )  = 
<. ( 1st `  ( 1st `  U ) ) ,  ( 2nd `  ( 1st `  U ) )
>. )
1210, 11mpan 651 . . . . . 6  |-  ( ( 1st `  U )  e.  CVec OLD  ->  ( 1st `  U )  =  <. ( 1st `  ( 1st `  U ) ) ,  ( 2nd `  ( 1st `  U ) )
>. )
13 phop.2 . . . . . . . 8  |-  G  =  ( +v `  U
)
1413vafval 21159 . . . . . . 7  |-  G  =  ( 1st `  ( 1st `  U ) )
15 phop.4 . . . . . . . 8  |-  S  =  ( .s OLD `  U
)
1615smfval 21161 . . . . . . 7  |-  S  =  ( 2nd `  ( 1st `  U ) )
1714, 16opeq12i 3801 . . . . . 6  |-  <. G ,  S >.  =  <. ( 1st `  ( 1st `  U
) ) ,  ( 2nd `  ( 1st `  U ) ) >.
1812, 17syl6eqr 2333 . . . . 5  |-  ( ( 1st `  U )  e.  CVec OLD  ->  ( 1st `  U )  =  <. G ,  S >. )
197, 9, 183syl 18 . . . 4  |-  ( U  e.  CPreHil OLD  ->  ( 1st `  U )  =  <. G ,  S >. )
2019opeq1d 3802 . . 3  |-  ( U  e.  CPreHil OLD  ->  <. ( 1st `  U ) ,  N >.  =  <. <. G ,  S >. ,  N >. )
216, 20syl5eqr 2329 . 2  |-  ( U  e.  CPreHil OLD  ->  <. ( 1st `  U ) ,  ( 2nd `  U
) >.  =  <. <. G ,  S >. ,  N >. )
223, 21eqtrd 2315 1  |-  ( U  e.  CPreHil OLD  ->  U  = 
<. <. G ,  S >. ,  N >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   <.cop 3643   Rel wrel 4694   ` cfv 5255   1stc1st 6120   2ndc2nd 6121   CVec OLDcvc 21101   NrmCVeccnv 21140   +vcpv 21141   .s OLDcns 21143   normCVcnmcv 21146   CPreHil OLDccphlo 21390
This theorem is referenced by:  phpar  21402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-1st 6122  df-2nd 6123  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-ph 21391
  Copyright terms: Public domain W3C validator