MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar Structured version   Unicode version

Theorem phpar 22327
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phpar.1  |-  X  =  ( BaseSet `  U )
phpar.2  |-  G  =  ( +v `  U
)
phpar.4  |-  S  =  ( .s OLD `  U
)
phpar.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
phpar  |-  ( ( U  e.  CPreHil OLD  /\  A  e.  X  /\  B  e.  X )  ->  ( ( ( N `
 ( A G B ) ) ^
2 )  +  ( ( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 A ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) ) )

Proof of Theorem phpar
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phpar.2 . . . . . . 7  |-  G  =  ( +v `  U
)
21vafval 22084 . . . . . 6  |-  G  =  ( 1st `  ( 1st `  U ) )
3 fvex 5744 . . . . . 6  |-  ( 1st `  ( 1st `  U
) )  e.  _V
42, 3eqeltri 2508 . . . . 5  |-  G  e. 
_V
5 phpar.4 . . . . . . 7  |-  S  =  ( .s OLD `  U
)
65smfval 22086 . . . . . 6  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 fvex 5744 . . . . . 6  |-  ( 2nd `  ( 1st `  U
) )  e.  _V
86, 7eqeltri 2508 . . . . 5  |-  S  e. 
_V
9 phpar.6 . . . . . . 7  |-  N  =  ( normCV `  U )
109nmcvfval 22088 . . . . . 6  |-  N  =  ( 2nd `  U
)
11 fvex 5744 . . . . . 6  |-  ( 2nd `  U )  e.  _V
1210, 11eqeltri 2508 . . . . 5  |-  N  e. 
_V
134, 8, 123pm3.2i 1133 . . . 4  |-  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V )
141, 5, 9phop 22321 . . . . . 6  |-  ( U  e.  CPreHil OLD  ->  U  = 
<. <. G ,  S >. ,  N >. )
1514eleq1d 2504 . . . . 5  |-  ( U  e.  CPreHil OLD  ->  ( U  e.  CPreHil OLD  <->  <. <. G ,  S >. ,  N >.  e.  CPreHil OLD ) )
1615ibi 234 . . . 4  |-  ( U  e.  CPreHil OLD  ->  <. <. G ,  S >. ,  N >.  e.  CPreHil
OLD )
17 phpar.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
1817, 1bafval 22085 . . . . . 6  |-  X  =  ran  G
1918isphg 22320 . . . . 5  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  ->  ( <. <. G ,  S >. ,  N >.  e.  CPreHil OLD  <->  (
<. <. G ,  S >. ,  N >.  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) ) )
2019simplbda 609 . . . 4  |-  ( ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  /\  <. <. G ,  S >. ,  N >.  e.  CPreHil OLD )  ->  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) )
2113, 16, 20sylancr 646 . . 3  |-  ( U  e.  CPreHil OLD  ->  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) )
22213ad2ant1 979 . 2  |-  ( ( U  e.  CPreHil OLD  /\  A  e.  X  /\  B  e.  X )  ->  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) )
23 oveq1 6090 . . . . . . . 8  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
2423fveq2d 5734 . . . . . . 7  |-  ( x  =  A  ->  ( N `  ( x G y ) )  =  ( N `  ( A G y ) ) )
2524oveq1d 6098 . . . . . 6  |-  ( x  =  A  ->  (
( N `  (
x G y ) ) ^ 2 )  =  ( ( N `
 ( A G y ) ) ^
2 ) )
26 oveq1 6090 . . . . . . . 8  |-  ( x  =  A  ->  (
x G ( -u
1 S y ) )  =  ( A G ( -u 1 S y ) ) )
2726fveq2d 5734 . . . . . . 7  |-  ( x  =  A  ->  ( N `  ( x G ( -u 1 S y ) ) )  =  ( N `
 ( A G ( -u 1 S y ) ) ) )
2827oveq1d 6098 . . . . . 6  |-  ( x  =  A  ->  (
( N `  (
x G ( -u
1 S y ) ) ) ^ 2 )  =  ( ( N `  ( A G ( -u 1 S y ) ) ) ^ 2 ) )
2925, 28oveq12d 6101 . . . . 5  |-  ( x  =  A  ->  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( ( ( N `  ( A G y ) ) ^ 2 )  +  ( ( N `  ( A G ( -u
1 S y ) ) ) ^ 2 ) ) )
30 fveq2 5730 . . . . . . . 8  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
3130oveq1d 6098 . . . . . . 7  |-  ( x  =  A  ->  (
( N `  x
) ^ 2 )  =  ( ( N `
 A ) ^
2 ) )
3231oveq1d 6098 . . . . . 6  |-  ( x  =  A  ->  (
( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) )  =  ( ( ( N `  A ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )
3332oveq2d 6099 . . . . 5  |-  ( x  =  A  ->  (
2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) )  =  ( 2  x.  ( ( ( N `
 A ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) )
3429, 33eqeq12d 2452 . . . 4  |-  ( x  =  A  ->  (
( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) )  <-> 
( ( ( N `
 ( A G y ) ) ^
2 )  +  ( ( N `  ( A G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  A ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
35 oveq2 6091 . . . . . . . 8  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
3635fveq2d 5734 . . . . . . 7  |-  ( y  =  B  ->  ( N `  ( A G y ) )  =  ( N `  ( A G B ) ) )
3736oveq1d 6098 . . . . . 6  |-  ( y  =  B  ->  (
( N `  ( A G y ) ) ^ 2 )  =  ( ( N `  ( A G B ) ) ^ 2 ) )
38 oveq2 6091 . . . . . . . . 9  |-  ( y  =  B  ->  ( -u 1 S y )  =  ( -u 1 S B ) )
3938oveq2d 6099 . . . . . . . 8  |-  ( y  =  B  ->  ( A G ( -u 1 S y ) )  =  ( A G ( -u 1 S B ) ) )
4039fveq2d 5734 . . . . . . 7  |-  ( y  =  B  ->  ( N `  ( A G ( -u 1 S y ) ) )  =  ( N `
 ( A G ( -u 1 S B ) ) ) )
4140oveq1d 6098 . . . . . 6  |-  ( y  =  B  ->  (
( N `  ( A G ( -u 1 S y ) ) ) ^ 2 )  =  ( ( N `
 ( A G ( -u 1 S B ) ) ) ^ 2 ) )
4237, 41oveq12d 6101 . . . . 5  |-  ( y  =  B  ->  (
( ( N `  ( A G y ) ) ^ 2 )  +  ( ( N `
 ( A G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( ( ( N `  ( A G B ) ) ^ 2 )  +  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) ) )
43 fveq2 5730 . . . . . . . 8  |-  ( y  =  B  ->  ( N `  y )  =  ( N `  B ) )
4443oveq1d 6098 . . . . . . 7  |-  ( y  =  B  ->  (
( N `  y
) ^ 2 )  =  ( ( N `
 B ) ^
2 ) )
4544oveq2d 6099 . . . . . 6  |-  ( y  =  B  ->  (
( ( N `  A ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) )  =  ( ( ( N `  A ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )
4645oveq2d 6099 . . . . 5  |-  ( y  =  B  ->  (
2  x.  ( ( ( N `  A
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) )  =  ( 2  x.  ( ( ( N `
 A ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) ) )
4742, 46eqeq12d 2452 . . . 4  |-  ( y  =  B  ->  (
( ( ( N `
 ( A G y ) ) ^
2 )  +  ( ( N `  ( A G ( -u 1 S y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  A ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  ( (
( N `  ( A G B ) ) ^ 2 )  +  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  A
) ^ 2 )  +  ( ( N `
 B ) ^
2 ) ) ) ) )
4834, 47rspc2v 3060 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x G (
-u 1 S y ) ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  ->  ( (
( N `  ( A G B ) ) ^ 2 )  +  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  A
) ^ 2 )  +  ( ( N `
 B ) ^
2 ) ) ) ) )
49483adant1 976 . 2  |-  ( ( U  e.  CPreHil OLD  /\  A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x G (
-u 1 S y ) ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  ->  ( (
( N `  ( A G B ) ) ^ 2 )  +  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  A
) ^ 2 )  +  ( ( N `
 B ) ^
2 ) ) ) ) )
5022, 49mpd 15 1  |-  ( ( U  e.  CPreHil OLD  /\  A  e.  X  /\  B  e.  X )  ->  ( ( ( N `
 ( A G B ) ) ^
2 )  +  ( ( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 A ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958   <.cop 3819   ` cfv 5456  (class class class)co 6083   1stc1st 6349   2ndc2nd 6350   1c1 8993    + caddc 8995    x. cmul 8997   -ucneg 9294   2c2 10051   ^cexp 11384   NrmCVeccnv 22065   +vcpv 22066   BaseSetcba 22067   .s
OLDcns 22068   normCVcnmcv 22071   CPreHil OLDccphlo 22315
This theorem is referenced by:  ip0i  22328  hlpar  22401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-1st 6351  df-2nd 6352  df-vc 22027  df-nv 22073  df-va 22076  df-ba 22077  df-sm 22078  df-0v 22079  df-nmcv 22081  df-ph 22316
  Copyright terms: Public domain W3C validator