MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1 Unicode version

Theorem phplem1 7040
Description: Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
phplem1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )

Proof of Theorem phplem1
StepHypRef Expression
1 nnord 4664 . . 3  |-  ( A  e.  om  ->  Ord  A )
2 nordeq 4411 . . . 4  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )
3 disjsn2 3694 . . . 4  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
42, 3syl 15 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  ( { A }  i^i  { B } )  =  (/) )
51, 4sylan 457 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  i^i  { B } )  =  (/) )
6 undif4 3511 . . 3  |-  ( ( { A }  i^i  { B } )  =  (/)  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( ( { A }  u.  A )  \  { B } ) )
7 df-suc 4398 . . . . 5  |-  suc  A  =  ( A  u.  { A } )
8 uncom 3319 . . . . 5  |-  ( A  u.  { A }
)  =  ( { A }  u.  A
)
97, 8eqtri 2303 . . . 4  |-  suc  A  =  ( { A }  u.  A )
109difeq1i 3290 . . 3  |-  ( suc 
A  \  { B } )  =  ( ( { A }  u.  A )  \  { B } )
116, 10syl6eqr 2333 . 2  |-  ( ( { A }  i^i  { B } )  =  (/)  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc 
A  \  { B } ) )
125, 11syl 15 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   Ord word 4391   suc csuc 4394   omcom 4656
This theorem is referenced by:  phplem2  7041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
  Copyright terms: Public domain W3C validator