MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Unicode version

Theorem phtpyco2 19020
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
phtpyco2.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
phtpyco2.p  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
phtpyco2.h  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
Assertion
Ref Expression
phtpyco2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( PHtpy `  K )
( P  o.  G
) ) )

Proof of Theorem phtpyco2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 phtpyco2.p . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
3 cnco 17335 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  P  e.  ( J  Cn  K ) )  -> 
( P  o.  F
)  e.  ( II 
Cn  K ) )
41, 2, 3syl2anc 644 . 2  |-  ( ph  ->  ( P  o.  F
)  e.  ( II 
Cn  K ) )
5 phtpyco2.g . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cnco 17335 . . 3  |-  ( ( G  e.  ( II 
Cn  J )  /\  P  e.  ( J  Cn  K ) )  -> 
( P  o.  G
)  e.  ( II 
Cn  K ) )
75, 2, 6syl2anc 644 . 2  |-  ( ph  ->  ( P  o.  G
)  e.  ( II 
Cn  K ) )
81, 5phtpyhtpy 19012 . . . 4  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( F ( II Htpy  J ) G ) )
9 phtpyco2.h . . . 4  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
108, 9sseldd 3351 . . 3  |-  ( ph  ->  H  e.  ( F ( II Htpy  J ) G ) )
111, 5, 2, 10htpyco2 19009 . 2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( II Htpy  K ) ( P  o.  G
) ) )
121, 5, 9phtpyi 19014 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 H s )  =  ( F `
 0 )  /\  ( 1 H s )  =  ( F `
 1 ) ) )
1312simpld 447 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F ` 
0 ) )
1413fveq2d 5735 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( P `  ( 0 H s ) )  =  ( P `  ( F `  0 ) ) )
15 0elunit 11020 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
16 simpr 449 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
17 opelxpi 4913 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
1815, 16, 17sylancr 646 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
19 iitopon 18914 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
20 txtopon 17628 . . . . . . . . 9  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( II  tX  II )  e.  (TopOn `  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
2119, 19, 20mp2an 655 . . . . . . . 8  |-  ( II 
tX  II )  e.  (TopOn `  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
2221a1i 11 . . . . . . 7  |-  ( ph  ->  ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) )
23 cntop2 17310 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
241, 23syl 16 . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
25 eqid 2438 . . . . . . . . 9  |-  U. J  =  U. J
2625toptopon 17003 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2724, 26sylib 190 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
281, 5phtpycn 19013 . . . . . . . 8  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( ( II 
tX  II )  Cn  J ) )
2928, 9sseldd 3351 . . . . . . 7  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  J ) )
30 cnf2 17318 . . . . . . 7  |-  ( ( ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  /\  J  e.  (TopOn `  U. J )  /\  H  e.  ( ( II  tX  II )  Cn  J ) )  ->  H : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> U. J )
3122, 27, 29, 30syl3anc 1185 . . . . . 6  |-  ( ph  ->  H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J )
32 fvco3 5803 . . . . . 6  |-  ( ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J  /\  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 0 ,  s
>. )  =  ( P `  ( H `  <. 0 ,  s
>. ) ) )
3331, 32sylan 459 . . . . 5  |-  ( (
ph  /\  <. 0 ,  s >.  e.  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 0 ,  s
>. )  =  ( P `  ( H `  <. 0 ,  s
>. ) ) )
3418, 33syldan 458 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  H
) `  <. 0 ,  s >. )  =  ( P `  ( H `
 <. 0 ,  s
>. ) ) )
35 df-ov 6087 . . . 4  |-  ( 0 ( P  o.  H
) s )  =  ( ( P  o.  H ) `  <. 0 ,  s >. )
36 df-ov 6087 . . . . 5  |-  ( 0 H s )  =  ( H `  <. 0 ,  s >. )
3736fveq2i 5734 . . . 4  |-  ( P `
 ( 0 H s ) )  =  ( P `  ( H `  <. 0 ,  s >. ) )
3834, 35, 373eqtr4g 2495 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( P  o.  H ) s )  =  ( P `  ( 0 H s ) ) )
39 iiuni 18916 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
4039, 25cnf 17315 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
411, 40syl 16 . . . . 5  |-  ( ph  ->  F : ( 0 [,] 1 ) --> U. J )
4241adantr 453 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  F : ( 0 [,] 1 ) --> U. J
)
43 fvco3 5803 . . . 4  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  0 )  =  ( P `  ( F `  0 ) ) )
4442, 15, 43sylancl 645 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  0 )  =  ( P `  ( F `  0 ) ) )
4514, 38, 443eqtr4d 2480 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( P  o.  H ) s )  =  ( ( P  o.  F ) ` 
0 ) )
4612simprd 451 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F ` 
1 ) )
4746fveq2d 5735 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( P `  ( 1 H s ) )  =  ( P `  ( F `  1 ) ) )
48 1elunit 11021 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
49 opelxpi 4913 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
5048, 16, 49sylancr 646 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
51 fvco3 5803 . . . . . 6  |-  ( ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J  /\  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 1 ,  s
>. )  =  ( P `  ( H `  <. 1 ,  s
>. ) ) )
5231, 51sylan 459 . . . . 5  |-  ( (
ph  /\  <. 1 ,  s >.  e.  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 1 ,  s
>. )  =  ( P `  ( H `  <. 1 ,  s
>. ) ) )
5350, 52syldan 458 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  H
) `  <. 1 ,  s >. )  =  ( P `  ( H `
 <. 1 ,  s
>. ) ) )
54 df-ov 6087 . . . 4  |-  ( 1 ( P  o.  H
) s )  =  ( ( P  o.  H ) `  <. 1 ,  s >. )
55 df-ov 6087 . . . . 5  |-  ( 1 H s )  =  ( H `  <. 1 ,  s >. )
5655fveq2i 5734 . . . 4  |-  ( P `
 ( 1 H s ) )  =  ( P `  ( H `  <. 1 ,  s >. ) )
5753, 54, 563eqtr4g 2495 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( P  o.  H ) s )  =  ( P `  ( 1 H s ) ) )
58 fvco3 5803 . . . 4  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  1 )  =  ( P `  ( F `  1 ) ) )
5942, 48, 58sylancl 645 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  1 )  =  ( P `  ( F `  1 ) ) )
6047, 57, 593eqtr4d 2480 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( P  o.  H ) s )  =  ( ( P  o.  F ) ` 
1 ) )
614, 7, 11, 45, 60isphtpyd 19016 1  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( PHtpy `  K )
( P  o.  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   <.cop 3819   U.cuni 4017    X. cxp 4879    o. ccom 4885   -->wf 5453   ` cfv 5457  (class class class)co 6084   0cc0 8995   1c1 8996   [,]cicc 10924   Topctop 16963  TopOnctopon 16964    Cn ccn 17293    tX ctx 17597   IIcii 18910   Htpy chtpy 18997   PHtpycphtpy 18998
This theorem is referenced by:  phtpcco2  19029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-icc 10928  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-cn 17296  df-tx 17599  df-ii 18912  df-htpy 19000  df-phtpy 19001
  Copyright terms: Public domain W3C validator