MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Unicode version

Theorem pi1coghm 18559
Description: The mapping  G between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi 1  A )
pi1co.q  |-  Q  =  ( K  pi 1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1coghm  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1coghm
Dummy variables  h  f  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 pi1co.a . . . 4  |-  ( ph  ->  A  e.  X )
3 pi1co.p . . . . 5  |-  P  =  ( J  pi 1  A )
43pi1grp 18548 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  P  e.  Grp )
51, 2, 4syl2anc 642 . . 3  |-  ( ph  ->  P  e.  Grp )
6 pi1co.f . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
7 cntop2 16971 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 15 . . . . 5  |-  ( ph  ->  K  e.  Top )
9 eqid 2283 . . . . . 6  |-  U. K  =  U. K
109toptopon 16671 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 188 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 pi1co.b . . . . 5  |-  ( ph  ->  ( F `  A
)  =  B )
13 cnf2 16979 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
141, 11, 6, 13syl3anc 1182 . . . . . 6  |-  ( ph  ->  F : X --> U. K
)
15 ffvelrn 5663 . . . . . 6  |-  ( ( F : X --> U. K  /\  A  e.  X
)  ->  ( F `  A )  e.  U. K )
1614, 2, 15syl2anc 642 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
1712, 16eqeltrrd 2358 . . . 4  |-  ( ph  ->  B  e.  U. K
)
18 pi1co.q . . . . 5  |-  Q  =  ( K  pi 1  B )
1918pi1grp 18548 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  B  e.  U. K )  ->  Q  e.  Grp )
2011, 17, 19syl2anc 642 . . 3  |-  ( ph  ->  Q  e.  Grp )
215, 20jca 518 . 2  |-  ( ph  ->  ( P  e.  Grp  /\  Q  e.  Grp )
)
22 pi1co.v . . . 4  |-  V  =  ( Base `  P
)
23 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
243, 18, 22, 23, 1, 6, 2, 12pi1cof 18557 . . 3  |-  ( ph  ->  G : V --> ( Base `  Q ) )
2522a1i 10 . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  P ) )
263, 1, 2, 25pi1bas2 18539 . . . . . . 7  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
2726eleq2d 2350 . . . . . 6  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( U. V /. (  ~=ph  `  J
) ) ) )
2827biimpa 470 . . . . 5  |-  ( (
ph  /\  y  e.  V )  ->  y  e.  ( U. V /. (  ~=ph  `  J )
) )
29 eqid 2283 . . . . . 6  |-  ( U. V /. (  ~=ph  `  J
) )  =  ( U. V /. (  ~=ph  `  J ) )
30 oveq1 5865 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z )  =  ( y ( +g  `  P ) z ) )
3130fveq2d 5529 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( G `  (
y ( +g  `  P
) z ) ) )
32 fveq2 5525 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  ( G `  y ) )
3332oveq1d 5873 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) )
3431, 33eqeq12d 2297 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
3534ralbidv 2563 . . . . . 6  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
36 oveq2 5866 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )
3736fveq2d 5529 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) ) )
38 fveq2 5525 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  ( G `  z ) )
3938oveq2d 5874 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) )
4037, 39eqeq12d 2297 . . . . . . . . 9  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
) )  =  ( ( G `  [
f ] (  ~=ph  `  J ) ) ( +g  `  Q ) ( G `  [
h ] (  ~=ph  `  J ) ) )  <-> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) ) )
413, 1, 2, 25pi1eluni 18540 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( f  e.  U. V 
<->  ( f  e.  ( II  Cn  J )  /\  ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  A ) ) )
4241biimpa 470 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  A  /\  ( f `  1
)  =  A ) )
4342simp1d 967 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  f  e.  ( II  Cn  J
) )
4443adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  ( II  Cn  J ) )
451adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  J  e.  (TopOn `  X )
)
462adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  A  e.  X )
4722a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( Base `  P
) )
483, 45, 46, 47pi1eluni 18540 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
h  e.  U. V  <->  ( h  e.  ( II 
Cn  J )  /\  ( h `  0
)  =  A  /\  ( h `  1
)  =  A ) ) )
4948biimpa 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h  e.  ( II  Cn  J
)  /\  ( h `  0 )  =  A  /\  ( h `
 1 )  =  A ) )
5049simp1d 967 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  ( II  Cn  J ) )
5142simp3d 969 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  1 )  =  A )
5251adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  A )
5349simp2d 968 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
0 )  =  A )
5452, 53eqtr4d 2318 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  ( h `  0 ) )
556ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  F  e.  ( J  Cn  K ) )
5644, 50, 54, 55copco 18516 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  ( f ( *p
`  J ) h ) )  =  ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) )
57 eceq1 6696 . . . . . . . . . . . 12  |-  ( ( F  o.  ( f ( *p `  J
) h ) )  =  ( ( F  o.  f ) ( *p `  K ) ( F  o.  h
) )  ->  [ ( F  o.  ( f ( *p `  J
) h ) ) ] (  ~=ph  `  K
)  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
5856, 57syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K )  =  [ ( ( F  o.  f ) ( *p `  K
) ( F  o.  h ) ) ] (  ~=ph  `  K ) )
5944, 50, 54pcocn 18515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  ( II  Cn  J ) )
6044, 50pco0 18512 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  ( f `  0 ) )
6142simp2d 968 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  0 )  =  A )
6261adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
0 )  =  A )
6360, 62eqtrd 2315 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  A )
6444, 50pco1 18513 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  ( h `  1 ) )
6549simp3d 969 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
1 )  =  A )
6664, 65eqtrd 2315 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  A )
671ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  J  e.  (TopOn `  X ) )
682ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  A  e.  X
)
6922a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  V  =  (
Base `  P )
)
703, 67, 68, 69pi1eluni 18540 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h )  e. 
U. V  <->  ( (
f ( *p `  J ) h )  e.  ( II  Cn  J )  /\  (
( f ( *p
`  J ) h ) `  0 )  =  A  /\  (
( f ( *p
`  J ) h ) `  1 )  =  A ) ) )
7159, 63, 66, 70mpbir3and 1135 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  U. V )
723, 18, 22, 23, 1, 6, 2, 12pi1coval 18558 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f
( *p `  J
) h )  e. 
U. V )  -> 
( G `  [
( f ( *p
`  J ) h ) ] (  ~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p
`  J ) h ) ) ] ( 
~=ph  `  K ) )
7372adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  ( f ( *p
`  J ) h )  e.  U. V
)  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
7471, 73syldan 456 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
75 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  Q )  =  (
Base `  Q )
7611ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
7717ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  B  e.  U. K )
78 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  Q )  =  ( +g  `  Q )
796adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
80 cnco 16995 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  f
)  e.  ( II 
Cn  K ) )
8143, 79, 80syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  ( II  Cn  K
) )
82 iitopon 18383 . . . . . . . . . . . . . . . . . 18  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
8382a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
84 cnf2 16979 . . . . . . . . . . . . . . . . 17  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  f  e.  (
II  Cn  J )
)  ->  f :
( 0 [,] 1
) --> X )
8583, 45, 43, 84syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  f : ( 0 [,] 1 ) --> X )
86 0elunit 10754 . . . . . . . . . . . . . . . 16  |-  0  e.  ( 0 [,] 1
)
87 fvco3 5596 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  0 )  =  ( F `  (
f `  0 )
) )
8885, 86, 87sylancl 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  ( F `  ( f `  0
) ) )
8961fveq2d 5529 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  0 ) )  =  ( F `  A ) )
9012adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  A )  =  B )
9188, 89, 903eqtrd 2319 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  B )
92 1elunit 10755 . . . . . . . . . . . . . . . 16  |-  1  e.  ( 0 [,] 1
)
93 fvco3 5596 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  1 )  =  ( F `  (
f `  1 )
) )
9485, 92, 93sylancl 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  ( F `  ( f `  1
) ) )
9551fveq2d 5529 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  1 ) )  =  ( F `  A ) )
9694, 95, 903eqtrd 2319 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  B )
9711adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
9817adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  B  e.  U. K )
99 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( Base `  Q )  =  ( Base `  Q
) )
10018, 97, 98, 99pi1eluni 18540 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
)  e.  U. ( Base `  Q )  <->  ( ( F  o.  f )  e.  ( II  Cn  K
)  /\  ( ( F  o.  f ) `  0 )  =  B  /\  ( ( F  o.  f ) `
 1 )  =  B ) ) )
10181, 91, 96, 100mpbir3and 1135 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q
) )
102101adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q )
)
103 cnco 16995 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  h
)  e.  ( II 
Cn  K ) )
10450, 55, 103syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  ( II  Cn  K ) )
10582a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
106 cnf2 16979 . . . . . . . . . . . . . . . 16  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  h  e.  (
II  Cn  J )
)  ->  h :
( 0 [,] 1
) --> X )
107105, 67, 50, 106syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h : ( 0 [,] 1 ) --> X )
108 fvco3 5596 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  0 )  =  ( F `  (
h `  0 )
) )
109107, 86, 108sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  ( F `  ( h `
 0 ) ) )
11053fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  0
) )  =  ( F `  A ) )
11112ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  A )  =  B )
112109, 110, 1113eqtrd 2319 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  B )
113 fvco3 5596 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  1 )  =  ( F `  (
h `  1 )
) )
114107, 92, 113sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  ( F `  ( h `
 1 ) ) )
11565fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  1
) )  =  ( F `  A ) )
116114, 115, 1113eqtrd 2319 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  B )
117 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Q
)  =  ( Base `  Q ) )
11818, 11, 17, 117pi1eluni 18540 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( F  o.  h )  e.  U. ( Base `  Q )  <->  ( ( F  o.  h
)  e.  ( II 
Cn  K )  /\  ( ( F  o.  h ) `  0
)  =  B  /\  ( ( F  o.  h ) `  1
)  =  B ) ) )
119118ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h )  e. 
U. ( Base `  Q
)  <->  ( ( F  o.  h )  e.  ( II  Cn  K
)  /\  ( ( F  o.  h ) `  0 )  =  B  /\  ( ( F  o.  h ) `
 1 )  =  B ) ) )
120104, 112, 116, 119mpbir3and 1135 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  U. ( Base `  Q )
)
12118, 75, 76, 77, 78, 102, 120pi1addval 18546 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) )  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
12258, 74, 1213eqtr4d 2325 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) ) )
123 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  P )  =  ( +g  `  P )
124 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  U. V )
125 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  U. V )
1263, 22, 67, 68, 123, 124, 125pi1addval 18546 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  [ ( f ( *p `  J ) h ) ] (  ~=ph  `  J
) )
127126fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 [ ( f ( *p `  J
) h ) ] (  ~=ph  `  J ) ) )
1283, 18, 22, 23, 1, 6, 2, 12pi1coval 18558 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. V )  ->  ( G `  [ f ] (  ~=ph  `  J
) )  =  [
( F  o.  f
) ] (  ~=ph  `  K ) )
129128adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  [ ( F  o.  f ) ] (  ~=ph  `  K ) )
1303, 18, 22, 23, 1, 6, 2, 12pi1coval 18558 . . . . . . . . . . . 12  |-  ( (
ph  /\  h  e.  U. V )  ->  ( G `  [ h ] (  ~=ph  `  J
) )  =  [
( F  o.  h
) ] (  ~=ph  `  K ) )
131130adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
132129, 131oveq12d 5876 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( [ ( F  o.  f
) ] (  ~=ph  `  K ) ( +g  `  Q ) [ ( F  o.  h ) ] (  ~=ph  `  K
) ) )
133122, 127, 1323eqtr4d 2325 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 [ h ]
(  ~=ph  `  J )
) ) )
13429, 40, 133ectocld 6726 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  U. V )  /\  z  e.  ( U. V /. (  ~=ph  `  J
) ) )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
135134ralrimiva 2626 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  ( U. V /. (  ~=ph  `  J )
) ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13626adantr 451 . . . . . . . 8  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
137136raleqdv 2742 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) )  <->  A. z  e.  ( U. V /. (  ~=ph  `  J ) ) ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) ) )
138135, 137mpbird 223 . . . . . 6  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13929, 35, 138ectocld 6726 . . . . 5  |-  ( (
ph  /\  y  e.  ( U. V /. (  ~=ph  `  J ) ) )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
14028, 139syldan 456 . . . 4  |-  ( (
ph  /\  y  e.  V )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) )
141140ralrimiva 2626 . . 3  |-  ( ph  ->  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
14224, 141jca 518 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) ) )
14322, 75, 123, 78isghm 14683 . 2  |-  ( G  e.  ( P  GrpHom  Q )  <->  ( ( P  e.  Grp  /\  Q  e.  Grp )  /\  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y
( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) ) ) )
14421, 142, 143sylanbrc 645 1  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643   U.cuni 3827    e. cmpt 4077   ran crn 4690    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   [cec 6658   /.cqs 6659   0cc0 8737   1c1 8738   [,]cicc 10659   Basecbs 13148   +g cplusg 13208   Grpcgrp 14362    GrpHom cghm 14680   Topctop 16631  TopOnctopon 16632    Cn ccn 16954   IIcii 18379    ~=ph cphtpc 18467   *pcpco 18498    pi 1 cpi1 18501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-mulg 14492  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pco 18503  df-om1 18504  df-pi1 18506
  Copyright terms: Public domain W3C validator