MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Unicode version

Theorem pi1coghm 18575
Description: The mapping  G between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi 1  A )
pi1co.q  |-  Q  =  ( K  pi 1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1coghm  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1coghm
Dummy variables  h  f  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 pi1co.a . . . 4  |-  ( ph  ->  A  e.  X )
3 pi1co.p . . . . 5  |-  P  =  ( J  pi 1  A )
43pi1grp 18564 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  P  e.  Grp )
51, 2, 4syl2anc 642 . . 3  |-  ( ph  ->  P  e.  Grp )
6 pi1co.f . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
7 cntop2 16987 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 15 . . . . 5  |-  ( ph  ->  K  e.  Top )
9 eqid 2296 . . . . . 6  |-  U. K  =  U. K
109toptopon 16687 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 188 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 pi1co.b . . . . 5  |-  ( ph  ->  ( F `  A
)  =  B )
13 cnf2 16995 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
141, 11, 6, 13syl3anc 1182 . . . . . 6  |-  ( ph  ->  F : X --> U. K
)
15 ffvelrn 5679 . . . . . 6  |-  ( ( F : X --> U. K  /\  A  e.  X
)  ->  ( F `  A )  e.  U. K )
1614, 2, 15syl2anc 642 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
1712, 16eqeltrrd 2371 . . . 4  |-  ( ph  ->  B  e.  U. K
)
18 pi1co.q . . . . 5  |-  Q  =  ( K  pi 1  B )
1918pi1grp 18564 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  B  e.  U. K )  ->  Q  e.  Grp )
2011, 17, 19syl2anc 642 . . 3  |-  ( ph  ->  Q  e.  Grp )
215, 20jca 518 . 2  |-  ( ph  ->  ( P  e.  Grp  /\  Q  e.  Grp )
)
22 pi1co.v . . . 4  |-  V  =  ( Base `  P
)
23 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
243, 18, 22, 23, 1, 6, 2, 12pi1cof 18573 . . 3  |-  ( ph  ->  G : V --> ( Base `  Q ) )
2522a1i 10 . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  P ) )
263, 1, 2, 25pi1bas2 18555 . . . . . . 7  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
2726eleq2d 2363 . . . . . 6  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( U. V /. (  ~=ph  `  J
) ) ) )
2827biimpa 470 . . . . 5  |-  ( (
ph  /\  y  e.  V )  ->  y  e.  ( U. V /. (  ~=ph  `  J )
) )
29 eqid 2296 . . . . . 6  |-  ( U. V /. (  ~=ph  `  J
) )  =  ( U. V /. (  ~=ph  `  J ) )
30 oveq1 5881 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z )  =  ( y ( +g  `  P ) z ) )
3130fveq2d 5545 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( G `  (
y ( +g  `  P
) z ) ) )
32 fveq2 5541 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  ( G `  y ) )
3332oveq1d 5889 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) )
3431, 33eqeq12d 2310 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
3534ralbidv 2576 . . . . . 6  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
36 oveq2 5882 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )
3736fveq2d 5545 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) ) )
38 fveq2 5541 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  ( G `  z ) )
3938oveq2d 5890 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) )
4037, 39eqeq12d 2310 . . . . . . . . 9  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
) )  =  ( ( G `  [
f ] (  ~=ph  `  J ) ) ( +g  `  Q ) ( G `  [
h ] (  ~=ph  `  J ) ) )  <-> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) ) )
413, 1, 2, 25pi1eluni 18556 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( f  e.  U. V 
<->  ( f  e.  ( II  Cn  J )  /\  ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  A ) ) )
4241biimpa 470 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  A  /\  ( f `  1
)  =  A ) )
4342simp1d 967 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  f  e.  ( II  Cn  J
) )
4443adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  ( II  Cn  J ) )
451adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  J  e.  (TopOn `  X )
)
462adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  A  e.  X )
4722a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( Base `  P
) )
483, 45, 46, 47pi1eluni 18556 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
h  e.  U. V  <->  ( h  e.  ( II 
Cn  J )  /\  ( h `  0
)  =  A  /\  ( h `  1
)  =  A ) ) )
4948biimpa 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h  e.  ( II  Cn  J
)  /\  ( h `  0 )  =  A  /\  ( h `
 1 )  =  A ) )
5049simp1d 967 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  ( II  Cn  J ) )
5142simp3d 969 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  1 )  =  A )
5251adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  A )
5349simp2d 968 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
0 )  =  A )
5452, 53eqtr4d 2331 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  ( h `  0 ) )
556ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  F  e.  ( J  Cn  K ) )
5644, 50, 54, 55copco 18532 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  ( f ( *p
`  J ) h ) )  =  ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) )
57 eceq1 6712 . . . . . . . . . . . 12  |-  ( ( F  o.  ( f ( *p `  J
) h ) )  =  ( ( F  o.  f ) ( *p `  K ) ( F  o.  h
) )  ->  [ ( F  o.  ( f ( *p `  J
) h ) ) ] (  ~=ph  `  K
)  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
5856, 57syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K )  =  [ ( ( F  o.  f ) ( *p `  K
) ( F  o.  h ) ) ] (  ~=ph  `  K ) )
5944, 50, 54pcocn 18531 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  ( II  Cn  J ) )
6044, 50pco0 18528 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  ( f `  0 ) )
6142simp2d 968 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  0 )  =  A )
6261adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
0 )  =  A )
6360, 62eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  A )
6444, 50pco1 18529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  ( h `  1 ) )
6549simp3d 969 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
1 )  =  A )
6664, 65eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  A )
671ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  J  e.  (TopOn `  X ) )
682ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  A  e.  X
)
6922a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  V  =  (
Base `  P )
)
703, 67, 68, 69pi1eluni 18556 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h )  e. 
U. V  <->  ( (
f ( *p `  J ) h )  e.  ( II  Cn  J )  /\  (
( f ( *p
`  J ) h ) `  0 )  =  A  /\  (
( f ( *p
`  J ) h ) `  1 )  =  A ) ) )
7159, 63, 66, 70mpbir3and 1135 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  U. V )
723, 18, 22, 23, 1, 6, 2, 12pi1coval 18574 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f
( *p `  J
) h )  e. 
U. V )  -> 
( G `  [
( f ( *p
`  J ) h ) ] (  ~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p
`  J ) h ) ) ] ( 
~=ph  `  K ) )
7372adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  ( f ( *p
`  J ) h )  e.  U. V
)  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
7471, 73syldan 456 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
75 eqid 2296 . . . . . . . . . . . 12  |-  ( Base `  Q )  =  (
Base `  Q )
7611ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
7717ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  B  e.  U. K )
78 eqid 2296 . . . . . . . . . . . 12  |-  ( +g  `  Q )  =  ( +g  `  Q )
796adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
80 cnco 17011 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  f
)  e.  ( II 
Cn  K ) )
8143, 79, 80syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  ( II  Cn  K
) )
82 iitopon 18399 . . . . . . . . . . . . . . . . . 18  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
8382a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
84 cnf2 16995 . . . . . . . . . . . . . . . . 17  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  f  e.  (
II  Cn  J )
)  ->  f :
( 0 [,] 1
) --> X )
8583, 45, 43, 84syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  f : ( 0 [,] 1 ) --> X )
86 0elunit 10770 . . . . . . . . . . . . . . . 16  |-  0  e.  ( 0 [,] 1
)
87 fvco3 5612 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  0 )  =  ( F `  (
f `  0 )
) )
8885, 86, 87sylancl 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  ( F `  ( f `  0
) ) )
8961fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  0 ) )  =  ( F `  A ) )
9012adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  A )  =  B )
9188, 89, 903eqtrd 2332 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  B )
92 1elunit 10771 . . . . . . . . . . . . . . . 16  |-  1  e.  ( 0 [,] 1
)
93 fvco3 5612 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  1 )  =  ( F `  (
f `  1 )
) )
9485, 92, 93sylancl 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  ( F `  ( f `  1
) ) )
9551fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  1 ) )  =  ( F `  A ) )
9694, 95, 903eqtrd 2332 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  B )
9711adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
9817adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  B  e.  U. K )
99 eqidd 2297 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( Base `  Q )  =  ( Base `  Q
) )
10018, 97, 98, 99pi1eluni 18556 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
)  e.  U. ( Base `  Q )  <->  ( ( F  o.  f )  e.  ( II  Cn  K
)  /\  ( ( F  o.  f ) `  0 )  =  B  /\  ( ( F  o.  f ) `
 1 )  =  B ) ) )
10181, 91, 96, 100mpbir3and 1135 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q
) )
102101adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q )
)
103 cnco 17011 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  h
)  e.  ( II 
Cn  K ) )
10450, 55, 103syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  ( II  Cn  K ) )
10582a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
106 cnf2 16995 . . . . . . . . . . . . . . . 16  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  h  e.  (
II  Cn  J )
)  ->  h :
( 0 [,] 1
) --> X )
107105, 67, 50, 106syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h : ( 0 [,] 1 ) --> X )
108 fvco3 5612 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  0 )  =  ( F `  (
h `  0 )
) )
109107, 86, 108sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  ( F `  ( h `
 0 ) ) )
11053fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  0
) )  =  ( F `  A ) )
11112ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  A )  =  B )
112109, 110, 1113eqtrd 2332 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  B )
113 fvco3 5612 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  1 )  =  ( F `  (
h `  1 )
) )
114107, 92, 113sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  ( F `  ( h `
 1 ) ) )
11565fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  1
) )  =  ( F `  A ) )
116114, 115, 1113eqtrd 2332 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  B )
117 eqidd 2297 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Q
)  =  ( Base `  Q ) )
11818, 11, 17, 117pi1eluni 18556 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( F  o.  h )  e.  U. ( Base `  Q )  <->  ( ( F  o.  h
)  e.  ( II 
Cn  K )  /\  ( ( F  o.  h ) `  0
)  =  B  /\  ( ( F  o.  h ) `  1
)  =  B ) ) )
119118ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h )  e. 
U. ( Base `  Q
)  <->  ( ( F  o.  h )  e.  ( II  Cn  K
)  /\  ( ( F  o.  h ) `  0 )  =  B  /\  ( ( F  o.  h ) `
 1 )  =  B ) ) )
120104, 112, 116, 119mpbir3and 1135 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  U. ( Base `  Q )
)
12118, 75, 76, 77, 78, 102, 120pi1addval 18562 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) )  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
12258, 74, 1213eqtr4d 2338 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) ) )
123 eqid 2296 . . . . . . . . . . . 12  |-  ( +g  `  P )  =  ( +g  `  P )
124 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  U. V )
125 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  U. V )
1263, 22, 67, 68, 123, 124, 125pi1addval 18562 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  [ ( f ( *p `  J ) h ) ] (  ~=ph  `  J
) )
127126fveq2d 5545 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 [ ( f ( *p `  J
) h ) ] (  ~=ph  `  J ) ) )
1283, 18, 22, 23, 1, 6, 2, 12pi1coval 18574 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. V )  ->  ( G `  [ f ] (  ~=ph  `  J
) )  =  [
( F  o.  f
) ] (  ~=ph  `  K ) )
129128adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  [ ( F  o.  f ) ] (  ~=ph  `  K ) )
1303, 18, 22, 23, 1, 6, 2, 12pi1coval 18574 . . . . . . . . . . . 12  |-  ( (
ph  /\  h  e.  U. V )  ->  ( G `  [ h ] (  ~=ph  `  J
) )  =  [
( F  o.  h
) ] (  ~=ph  `  K ) )
131130adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
132129, 131oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( [ ( F  o.  f
) ] (  ~=ph  `  K ) ( +g  `  Q ) [ ( F  o.  h ) ] (  ~=ph  `  K
) ) )
133122, 127, 1323eqtr4d 2338 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 [ h ]
(  ~=ph  `  J )
) ) )
13429, 40, 133ectocld 6742 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  U. V )  /\  z  e.  ( U. V /. (  ~=ph  `  J
) ) )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
135134ralrimiva 2639 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  ( U. V /. (  ~=ph  `  J )
) ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13626adantr 451 . . . . . . . 8  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
137136raleqdv 2755 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) )  <->  A. z  e.  ( U. V /. (  ~=ph  `  J ) ) ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) ) )
138135, 137mpbird 223 . . . . . 6  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13929, 35, 138ectocld 6742 . . . . 5  |-  ( (
ph  /\  y  e.  ( U. V /. (  ~=ph  `  J ) ) )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
14028, 139syldan 456 . . . 4  |-  ( (
ph  /\  y  e.  V )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) )
141140ralrimiva 2639 . . 3  |-  ( ph  ->  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
14224, 141jca 518 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) ) )
14322, 75, 123, 78isghm 14699 . 2  |-  ( G  e.  ( P  GrpHom  Q )  <->  ( ( P  e.  Grp  /\  Q  e.  Grp )  /\  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y
( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) ) ) )
14421, 142, 143sylanbrc 645 1  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   <.cop 3656   U.cuni 3843    e. cmpt 4093   ran crn 4706    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   [cec 6674   /.cqs 6675   0cc0 8753   1c1 8754   [,]cicc 10675   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378    GrpHom cghm 14696   Topctop 16647  TopOnctopon 16648    Cn ccn 16970   IIcii 18395    ~=ph cphtpc 18483   *pcpco 18514    pi 1 cpi1 18517
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-divs 13428  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-mulg 14508  df-ghm 14697  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-ii 18397  df-htpy 18484  df-phtpy 18485  df-phtpc 18506  df-pco 18519  df-om1 18520  df-pi1 18522
  Copyright terms: Public domain W3C validator