MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Unicode version

Theorem pi1grplem 19076
Description: Lemma for pi1grp 19077. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g  |-  G  =  ( J  pi 1  Y )
pi1fval.b  |-  B  =  ( Base `  G
)
pi1fval.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1fval.4  |-  ( ph  ->  Y  e.  X )
pi1grplem.z  |-  .0.  =  ( ( 0 [,] 1 )  X.  { Y } )
Assertion
Ref Expression
pi1grplem  |-  ( ph  ->  ( G  e.  Grp  /\ 
[  .0.  ] ( 
~=ph  `  J )  =  ( 0g `  G
) ) )

Proof of Theorem pi1grplem
Dummy variables  a 
b  c  d  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5  |-  G  =  ( J  pi 1  Y )
2 pi1fval.3 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 pi1fval.4 . . . . 5  |-  ( ph  ->  Y  e.  X )
4 eqid 2438 . . . . 5  |-  ( J 
Om 1  Y )  =  ( J  Om 1  Y )
51, 2, 3, 4pi1val 19064 . . . 4  |-  ( ph  ->  G  =  ( ( J  Om 1  Y
)  /.s  (  ~=ph  `  J ) ) )
6 pi1fval.b . . . . . 6  |-  B  =  ( Base `  G
)
76a1i 11 . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
8 eqidd 2439 . . . . 5  |-  ( ph  ->  ( Base `  ( J  Om 1  Y ) )  =  ( Base `  ( J  Om 1  Y ) ) )
91, 2, 3, 4, 7, 8pi1buni 19067 . . . 4  |-  ( ph  ->  U. B  =  (
Base `  ( J  Om 1  Y )
) )
10 fvex 5744 . . . . 5  |-  (  ~=ph  `  J )  e.  _V
1110a1i 11 . . . 4  |-  ( ph  ->  (  ~=ph  `  J )  e.  _V )
12 ovex 6108 . . . . 5  |-  ( J 
Om 1  Y )  e.  _V
1312a1i 11 . . . 4  |-  ( ph  ->  ( J  Om 1  Y )  e.  _V )
141, 2, 3, 4, 7, 9pi1blem 19066 . . . . 5  |-  ( ph  ->  ( ( (  ~=ph  `  J ) " U. B )  C_  U. B  /\  U. B  C_  (
II  Cn  J )
) )
1514simpld 447 . . . 4  |-  ( ph  ->  ( (  ~=ph  `  J
) " U. B
)  C_  U. B )
165, 9, 11, 13, 15divsin 13771 . . 3  |-  ( ph  ->  G  =  ( ( J  Om 1  Y
)  /.s  ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) ) )
174, 2, 3om1plusg 19061 . . 3  |-  ( ph  ->  ( *p `  J
)  =  ( +g  `  ( J  Om 1  Y ) ) )
18 phtpcer 19022 . . . . 5  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
1918a1i 11 . . . 4  |-  ( ph  ->  (  ~=ph  `  J )  Er  ( II  Cn  J ) )
2014simprd 451 . . . 4  |-  ( ph  ->  U. B  C_  (
II  Cn  J )
)
2119, 20erinxp 6980 . . 3  |-  ( ph  ->  ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )  Er  U. B
)
22 eqid 2438 . . . . 5  |-  ( ( 
~=ph  `  J )  i^i  ( U. B  X.  U. B ) )  =  ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )
23 eqid 2438 . . . . 5  |-  ( +g  `  ( J  Om 1  Y ) )  =  ( +g  `  ( J  Om 1  Y ) )
241, 2, 3, 7, 22, 4, 23pi1cpbl 19071 . . . 4  |-  ( ph  ->  ( ( a ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) c  /\  b ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) d )  ->  (
a ( +g  `  ( J  Om 1  Y ) ) b ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) ( c ( +g  `  ( J  Om 1  Y ) ) d ) ) )
2517oveqd 6100 . . . . 5  |-  ( ph  ->  ( a ( *p
`  J ) b )  =  ( a ( +g  `  ( J  Om 1  Y ) ) b ) )
2617oveqd 6100 . . . . 5  |-  ( ph  ->  ( c ( *p
`  J ) d )  =  ( c ( +g  `  ( J  Om 1  Y ) ) d ) )
2725, 26breq12d 4227 . . . 4  |-  ( ph  ->  ( ( a ( *p `  J ) b ) ( ( 
~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) ( c ( *p `  J ) d )  <-> 
( a ( +g  `  ( J  Om 1  Y ) ) b ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B
) ) ( c ( +g  `  ( J  Om 1  Y ) ) d ) ) )
2824, 27sylibrd 227 . . 3  |-  ( ph  ->  ( ( a ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) c  /\  b ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) d )  ->  (
a ( *p `  J ) b ) ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) ( c ( *p `  J ) d ) ) )
2923ad2ant1 979 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  J  e.  (TopOn `  X
) )
3033ad2ant1 979 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  Y  e.  X )
3193ad2ant1 979 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  U. B  =  ( Base `  ( J  Om 1  Y ) ) )
32 simp2 959 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  ->  x  e.  U. B )
33 simp3 960 . . . 4  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  -> 
y  e.  U. B
)
344, 29, 30, 31, 32, 33om1addcl 19060 . . 3  |-  ( (
ph  /\  x  e.  U. B  /\  y  e. 
U. B )  -> 
( x ( *p
`  J ) y )  e.  U. B
)
352adantr 453 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  J  e.  (TopOn `  X ) )
363adantr 453 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  Y  e.  X
)
379adantr 453 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  U. B  =  (
Base `  ( J  Om 1  Y )
) )
38343adant3r3 1165 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ( *p `  J ) y )  e.  U. B )
39 simpr3 966 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  z  e.  U. B )
404, 35, 36, 37, 38, 39om1addcl 19060 . . . 4  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( ( x ( *p `  J
) y ) ( *p `  J ) z )  e.  U. B )
41 simpr1 964 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  x  e.  U. B )
42 simpr2 965 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  y  e.  U. B )
434, 35, 36, 37, 42, 39om1addcl 19060 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ( *p `  J ) z )  e.  U. B )
444, 35, 36, 37, 41, 43om1addcl 19060 . . . 4  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ( *p `  J ) ( y ( *p
`  J ) z ) )  e.  U. B )
451, 2, 3, 7pi1eluni 19069 . . . . . . . 8  |-  ( ph  ->  ( x  e.  U. B 
<->  ( x  e.  ( II  Cn  J )  /\  ( x ` 
0 )  =  Y  /\  ( x ` 
1 )  =  Y ) ) )
4645biimpa 472 . . . . . . 7  |-  ( (
ph  /\  x  e.  U. B )  ->  (
x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y  /\  ( x `  1
)  =  Y ) )
47463ad2antr1 1123 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x  e.  ( II  Cn  J
)  /\  ( x `  0 )  =  Y  /\  ( x `
 1 )  =  Y ) )
4847simp1d 970 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  x  e.  ( II  Cn  J ) )
496a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  B  =  (
Base `  G )
)
501, 35, 36, 49pi1eluni 19069 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y  e. 
U. B  <->  ( y  e.  ( II  Cn  J
)  /\  ( y `  0 )  =  Y  /\  ( y `
 1 )  =  Y ) ) )
5142, 50mpbid 203 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y  e.  ( II  Cn  J
)  /\  ( y `  0 )  =  Y  /\  ( y `
 1 )  =  Y ) )
5251simp1d 970 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  y  e.  ( II  Cn  J ) )
531, 35, 36, 49pi1eluni 19069 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( z  e. 
U. B  <->  ( z  e.  ( II  Cn  J
)  /\  ( z `  0 )  =  Y  /\  ( z `
 1 )  =  Y ) ) )
5439, 53mpbid 203 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( z  e.  ( II  Cn  J
)  /\  ( z `  0 )  =  Y  /\  ( z `
 1 )  =  Y ) )
5554simp1d 970 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  z  e.  ( II  Cn  J ) )
5647simp3d 972 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ` 
1 )  =  Y )
5751simp2d 971 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ` 
0 )  =  Y )
5856, 57eqtr4d 2473 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( x ` 
1 )  =  ( y `  0 ) )
5951simp3d 972 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ` 
1 )  =  Y )
6054simp2d 971 . . . . . 6  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( z ` 
0 )  =  Y )
6159, 60eqtr4d 2473 . . . . 5  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( y ` 
1 )  =  ( z `  0 ) )
62 eqid 2438 . . . . 5  |-  ( u  e.  ( 0 [,] 1 )  |->  if ( u  <_  ( 1  /  2 ) ,  if ( u  <_ 
( 1  /  4
) ,  ( 2  x.  u ) ,  ( u  +  ( 1  /  4 ) ) ) ,  ( ( u  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( u  e.  ( 0 [,] 1 )  |->  if ( u  <_  (
1  /  2 ) ,  if ( u  <_  ( 1  / 
4 ) ,  ( 2  x.  u ) ,  ( u  +  ( 1  /  4
) ) ) ,  ( ( u  / 
2 )  +  ( 1  /  2 ) ) ) )
6348, 52, 55, 58, 61, 62pcoass 19051 . . . 4  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( ( x ( *p `  J
) y ) ( *p `  J ) z ) (  ~=ph  `  J ) ( x ( *p `  J
) ( y ( *p `  J ) z ) ) )
64 brinxp2 4941 . . . 4  |-  ( ( ( x ( *p
`  J ) y ) ( *p `  J ) z ) ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) ( x ( *p `  J ) ( y ( *p
`  J ) z ) )  <->  ( (
( x ( *p
`  J ) y ) ( *p `  J ) z )  e.  U. B  /\  ( x ( *p
`  J ) ( y ( *p `  J ) z ) )  e.  U. B  /\  ( ( x ( *p `  J ) y ) ( *p
`  J ) z ) (  ~=ph  `  J
) ( x ( *p `  J ) ( y ( *p
`  J ) z ) ) ) )
6540, 44, 63, 64syl3anbrc 1139 . . 3  |-  ( (
ph  /\  ( x  e.  U. B  /\  y  e.  U. B  /\  z  e.  U. B ) )  ->  ( ( x ( *p `  J
) y ) ( *p `  J ) z ) ( ( 
~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) ( x ( *p `  J ) ( y ( *p `  J
) z ) ) )
66 pi1grplem.z . . . . . 6  |-  .0.  =  ( ( 0 [,] 1 )  X.  { Y } )
6766pcoptcl 19048 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  X )  ->  (  .0.  e.  ( II  Cn  J )  /\  (  .0.  `  0 )  =  Y  /\  (  .0.  `  1 )  =  Y ) )
682, 3, 67syl2anc 644 . . . 4  |-  ( ph  ->  (  .0.  e.  ( II  Cn  J )  /\  (  .0.  ` 
0 )  =  Y  /\  (  .0.  ` 
1 )  =  Y ) )
691, 2, 3, 7pi1eluni 19069 . . . 4  |-  ( ph  ->  (  .0.  e.  U. B 
<->  (  .0.  e.  ( II  Cn  J )  /\  (  .0.  ` 
0 )  =  Y  /\  (  .0.  ` 
1 )  =  Y ) ) )
7068, 69mpbird 225 . . 3  |-  ( ph  ->  .0.  e.  U. B
)
712adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  J  e.  (TopOn `  X )
)
723adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  Y  e.  X )
739adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  U. B  =  ( Base `  ( J  Om 1  Y ) ) )
7470adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  .0.  e.  U. B )
75 simpr 449 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  x  e.  U. B )
764, 71, 72, 73, 74, 75om1addcl 19060 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (  .0.  ( *p `  J
) x )  e. 
U. B )
7720sselda 3350 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  x  e.  ( II  Cn  J
) )
7846simp2d 971 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
x `  0 )  =  Y )
7966pcopt 19049 . . . . 5  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x `  0
)  =  Y )  ->  (  .0.  ( *p `  J ) x ) (  ~=ph  `  J
) x )
8077, 78, 79syl2anc 644 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (  .0.  ( *p `  J
) x ) ( 
~=ph  `  J ) x )
81 brinxp2 4941 . . . 4  |-  ( (  .0.  ( *p `  J ) x ) ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) ) x  <->  ( (  .0.  ( *p `  J
) x )  e. 
U. B  /\  x  e.  U. B  /\  (  .0.  ( *p `  J
) x ) ( 
~=ph  `  J ) x ) )
8276, 75, 80, 81syl3anbrc 1139 . . 3  |-  ( (
ph  /\  x  e.  U. B )  ->  (  .0.  ( *p `  J
) x ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) x )
83 eqid 2438 . . . . . . 7  |-  ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) )  =  ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) )
8483pcorevcl 19052 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) )  e.  ( II  Cn  J )  /\  ( ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) ) `
 0 )  =  ( x `  1
)  /\  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) ) `  1 )  =  ( x ` 
0 ) ) )
8577, 84syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) )  e.  ( II  Cn  J )  /\  ( ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) ) `
 0 )  =  ( x `  1
)  /\  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) ) `  1 )  =  ( x ` 
0 ) ) )
8685simp1d 970 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) )  e.  ( II 
Cn  J ) )
8785simp2d 971 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  0
)  =  ( x `
 1 ) )
8846simp3d 972 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
x `  1 )  =  Y )
8987, 88eqtrd 2470 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  0
)  =  Y )
9085simp3d 972 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  1
)  =  ( x `
 0 ) )
9190, 78eqtrd 2470 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  1
)  =  Y )
921, 2, 3, 7pi1eluni 19069 . . . . 5  |-  ( ph  ->  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) )  e. 
U. B  <->  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) )  e.  ( II 
Cn  J )  /\  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) ) ` 
0 )  =  Y  /\  ( ( a  e.  ( 0 [,] 1 )  |->  ( x `
 ( 1  -  a ) ) ) `
 1 )  =  Y ) ) )
9392adantr 453 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) )  e.  U. B 
<->  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) )  e.  ( II  Cn  J
)  /\  ( (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) ) `  0 )  =  Y  /\  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) `  1
)  =  Y ) ) )
9486, 89, 91, 93mpbir3and 1138 . . 3  |-  ( (
ph  /\  x  e.  U. B )  ->  (
a  e.  ( 0 [,] 1 )  |->  ( x `  ( 1  -  a ) ) )  e.  U. B
)
954, 71, 72, 73, 94, 75om1addcl 19060 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x )  e.  U. B
)
96 eqid 2438 . . . . . . 7  |-  ( ( 0 [,] 1 )  X.  { ( x `
 1 ) } )  =  ( ( 0 [,] 1 )  X.  { ( x `
 1 ) } )
9783, 96pcorev 19054 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( x ` 
1 ) } ) )
9877, 97syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( x ` 
1 ) } ) )
9988sneqd 3829 . . . . . . 7  |-  ( (
ph  /\  x  e.  U. B )  ->  { ( x `  1 ) }  =  { Y } )
10099xpeq2d 4904 . . . . . 6  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( 0 [,] 1
)  X.  { ( x `  1 ) } )  =  ( ( 0 [,] 1
)  X.  { Y } ) )
101100, 66syl6reqr 2489 . . . . 5  |-  ( (
ph  /\  x  e.  U. B )  ->  .0.  =  ( ( 0 [,] 1 )  X. 
{ ( x ` 
1 ) } ) )
10298, 101breqtrrd 4240 . . . 4  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) (  ~=ph  `  J
)  .0.  )
103 brinxp2 4941 . . . 4  |-  ( ( ( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B
) )  .0.  <->  ( (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x )  e.  U. B  /\  .0.  e.  U. B  /\  ( ( a  e.  ( 0 [,] 1
)  |->  ( x `  ( 1  -  a
) ) ) ( *p `  J ) x ) (  ~=ph  `  J )  .0.  )
)
10495, 74, 102, 103syl3anbrc 1139 . . 3  |-  ( (
ph  /\  x  e.  U. B )  ->  (
( a  e.  ( 0 [,] 1 ) 
|->  ( x `  (
1  -  a ) ) ) ( *p
`  J ) x ) ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B
) )  .0.  )
10516, 9, 17, 21, 13, 28, 34, 65, 70, 82, 94, 104divsgrp2 14938 . 2  |-  ( ph  ->  ( G  e.  Grp  /\ 
[  .0.  ] ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) )  =  ( 0g `  G ) ) )
106 ecinxp 6981 . . . . 5  |-  ( ( ( (  ~=ph  `  J
) " U. B
)  C_  U. B  /\  .0.  e.  U. B )  ->  [  .0.  ]
(  ~=ph  `  J )  =  [  .0.  ] ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) )
10715, 70, 106syl2anc 644 . . . 4  |-  ( ph  ->  [  .0.  ] ( 
~=ph  `  J )  =  [  .0.  ] ( (  ~=ph  `  J )  i^i  ( U. B  X.  U. B ) ) )
108107eqeq1d 2446 . . 3  |-  ( ph  ->  ( [  .0.  ]
(  ~=ph  `  J )  =  ( 0g `  G )  <->  [  .0.  ] ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )  =  ( 0g
`  G ) ) )
109108anbi2d 686 . 2  |-  ( ph  ->  ( ( G  e. 
Grp  /\  [  .0.  ] (  ~=ph  `  J )  =  ( 0g `  G ) )  <->  ( G  e.  Grp  /\  [  .0.  ] ( (  ~=ph  `  J
)  i^i  ( U. B  X.  U. B ) )  =  ( 0g
`  G ) ) ) )
110105, 109mpbird 225 1  |-  ( ph  ->  ( G  e.  Grp  /\ 
[  .0.  ] ( 
~=ph  `  J )  =  ( 0g `  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    i^i cin 3321    C_ wss 3322   ifcif 3741   {csn 3816   U.cuni 4017   class class class wbr 4214    e. cmpt 4268    X. cxp 4878   "cima 4883   ` cfv 5456  (class class class)co 6083    Er wer 6904   [cec 6905   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    <_ cle 9123    - cmin 9293    / cdiv 9679   2c2 10051   4c4 10053   [,]cicc 10921   Basecbs 13471   +g cplusg 13531   0gc0g 13725   Grpcgrp 14687  TopOnctopon 16961    Cn ccn 17290   IIcii 18907    ~=ph cphtpc 18996   *pcpco 19027    Om 1 comi 19028    pi 1 cpi1 19030
This theorem is referenced by:  pi1grp  19077  pi1id  19078  pi1inv  19079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-icc 10925  df-fz 11046  df-fzo 11138  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-divs 13737  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-grp 14814  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-cn 17293  df-cnp 17294  df-tx 17596  df-hmeo 17789  df-xms 18352  df-ms 18353  df-tms 18354  df-ii 18909  df-htpy 18997  df-phtpy 18998  df-phtpc 19019  df-pco 19032  df-om1 19033  df-pi1 19035
  Copyright terms: Public domain W3C validator