MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem3 Unicode version

Theorem pilem3 19845
Description: Lemma for pire 19848, pigt2lt4 19846 and sinpi 19847. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
pilem3  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )

Proof of Theorem pilem3
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 9831 . . . . 5  |-  2  e.  RR
21a1i 10 . . . 4  |-  (  T. 
->  2  e.  RR )
3 4re 9835 . . . . 5  |-  4  e.  RR
43a1i 10 . . . 4  |-  (  T. 
->  4  e.  RR )
5 0re 8854 . . . . 5  |-  0  e.  RR
65a1i 10 . . . 4  |-  (  T. 
->  0  e.  RR )
7 2lt4 9906 . . . . 5  |-  2  <  4
87a1i 10 . . . 4  |-  (  T. 
->  2  <  4
)
9 iccssre 10747 . . . . . . 7  |-  ( ( 2  e.  RR  /\  4  e.  RR )  ->  ( 2 [,] 4
)  C_  RR )
101, 3, 9mp2an 653 . . . . . 6  |-  ( 2 [,] 4 )  C_  RR
11 ax-resscn 8810 . . . . . 6  |-  RR  C_  CC
1210, 11sstri 3201 . . . . 5  |-  ( 2 [,] 4 )  C_  CC
1312a1i 10 . . . 4  |-  (  T. 
->  ( 2 [,] 4
)  C_  CC )
14 sincn 19836 . . . . 5  |-  sin  e.  ( CC -cn-> CC )
1514a1i 10 . . . 4  |-  (  T. 
->  sin  e.  ( CC
-cn-> CC ) )
1610sseli 3189 . . . . . 6  |-  ( y  e.  ( 2 [,] 4 )  ->  y  e.  RR )
1716resincld 12439 . . . . 5  |-  ( y  e.  ( 2 [,] 4 )  ->  ( sin `  y )  e.  RR )
1817adantl 452 . . . 4  |-  ( (  T.  /\  y  e.  ( 2 [,] 4
) )  ->  ( sin `  y )  e.  RR )
19 sin4lt0 12491 . . . . . 6  |-  ( sin `  4 )  <  0
20 sincos2sgn 12490 . . . . . . 7  |-  ( 0  <  ( sin `  2
)  /\  ( cos `  2 )  <  0
)
2120simpli 444 . . . . . 6  |-  0  <  ( sin `  2
)
2219, 21pm3.2i 441 . . . . 5  |-  ( ( sin `  4 )  <  0  /\  0  <  ( sin `  2
) )
2322a1i 10 . . . 4  |-  (  T. 
->  ( ( sin `  4
)  <  0  /\  0  <  ( sin `  2
) ) )
242, 4, 6, 8, 13, 15, 18, 23ivth2 18831 . . 3  |-  (  T. 
->  E. x  e.  ( 2 (,) 4 ) ( sin `  x
)  =  0 )
2524trud 1314 . 2  |-  E. x  e.  ( 2 (,) 4
) ( sin `  x
)  =  0
26 df-pi 12370 . . . . . . 7  |-  pi  =  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )
27 elioore 10702 . . . . . . . . . . 11  |-  ( x  e.  ( 2 (,) 4 )  ->  x  e.  RR )
2827adantr 451 . . . . . . . . . 10  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  RR )
295a1i 10 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
0  e.  RR )
301a1i 10 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
2  e.  RR )
31 2pos 9844 . . . . . . . . . . . 12  |-  0  <  2
3231a1i 10 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
0  <  2 )
33 eliooord 10726 . . . . . . . . . . . . 13  |-  ( x  e.  ( 2 (,) 4 )  ->  (
2  <  x  /\  x  <  4 ) )
3433simpld 445 . . . . . . . . . . . 12  |-  ( x  e.  ( 2 (,) 4 )  ->  2  <  x )
3534adantr 451 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
2  <  x )
3629, 30, 28, 32, 35lttrd 8993 . . . . . . . . . 10  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
0  <  x )
3728, 36elrpd 10404 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  RR+ )
38 simpr 447 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( sin `  x
)  =  0 )
39 pilem1 19843 . . . . . . . . 9  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( x  e.  RR+  /\  ( sin `  x )  =  0 ) )
4037, 38, 39sylanbrc 645 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) )
41 inss1 3402 . . . . . . . . . 10  |-  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR+
42 rpssre 10380 . . . . . . . . . 10  |-  RR+  C_  RR
4341, 42sstri 3201 . . . . . . . . 9  |-  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR
4441sseli 3189 . . . . . . . . . . . 12  |-  ( z  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
z  e.  RR+ )
4544rpge0d 10410 . . . . . . . . . . 11  |-  ( z  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
0  <_  z )
4645rgen 2621 . . . . . . . . . 10  |-  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) 0  <_  z
47 breq1 4042 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
y  <_  z  <->  0  <_  z ) )
4847ralbidv 2576 . . . . . . . . . . 11  |-  ( y  =  0  ->  ( A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z  <->  A. z  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) 0  <_  z )
)
4948rspcev 2897 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. z  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) 0  <_  z )  ->  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) y  <_  z )
505, 46, 49mp2an 653 . . . . . . . . 9  |-  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z
51 infmrlb 9751 . . . . . . . . 9  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z  /\  x  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <_  x )
5243, 50, 51mp3an12 1267 . . . . . . . 8  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <_  x )
5340, 52syl 15 . . . . . . 7  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <_  x )
5426, 53syl5eqbr 4072 . . . . . 6  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  <_  x )
55 simplll 734 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  x  e.  ( 2 (,) 4 ) )
56 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  y  e.  (
RR+  i^i  ( `' sin " { 0 } ) ) )
57 pilem1 19843 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( y  e.  RR+  /\  ( sin `  y )  =  0 ) )
5856, 57sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( y  e.  RR+  /\  ( sin `  y
)  =  0 ) )
5958simpld 445 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  y  e.  RR+ )
60 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( sin `  x
)  =  0 )
6158simprd 449 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( sin `  y
)  =  0 )
62 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  pi  <  x
)
6355, 59, 60, 61, 62pilem2 19844 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( ( pi  +  x )  / 
2 )  <_  y
)
6463ralrimiva 2639 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) ( ( pi  +  x
)  /  2 )  <_  y )
6543a1i 10 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR )
66 ne0i 3474 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/) )
6740, 66syl 15 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/) )
6867adantr 451 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( RR+  i^i  ( `' sin " {
0 } ) )  =/=  (/) )
6950a1i 10 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z )
70 infmrcl 9749 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
7143, 50, 70mp3an13 1268 . . . . . . . . . . . . . . . . 17  |-  ( (
RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
7267, 71syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
7326, 72syl5eqel 2380 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  e.  RR )
7473, 28readdcld 8878 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  +  x
)  e.  RR )
7574adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( pi  +  x )  e.  RR )
7675rehalfcld 9974 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
pi  +  x )  /  2 )  e.  RR )
77 infmrgelb 9750 . . . . . . . . . . . 12  |-  ( ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z )  /\  ( ( pi  +  x )  /  2
)  e.  RR )  ->  ( ( ( pi  +  x )  /  2 )  <_  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <->  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) ( ( pi  +  x )  / 
2 )  <_  y
) )
7865, 68, 69, 76, 77syl31anc 1185 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
( pi  +  x
)  /  2 )  <_  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <->  A. y  e.  (
RR+  i^i  ( `' sin " { 0 } ) ) ( ( pi  +  x )  /  2 )  <_ 
y ) )
7964, 78mpbird 223 . . . . . . . . . 10  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
pi  +  x )  /  2 )  <_  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  ) )
8079, 26syl6breqr 4079 . . . . . . . . 9  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
pi  +  x )  /  2 )  <_  pi )
8180ex 423 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  <  x  ->  ( ( pi  +  x )  /  2
)  <_  pi )
)
8273, 28ltnled 8982 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  <  x  <->  -.  x  <_  pi )
)
8373recnd 8877 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  e.  CC )
8428recnd 8877 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  CC )
8583, 84addcomd 9030 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  +  x
)  =  ( x  +  pi ) )
8685oveq1d 5889 . . . . . . . . . 10  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( ( pi  +  x )  /  2
)  =  ( ( x  +  pi )  /  2 ) )
8786breq1d 4049 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( ( ( pi  +  x )  / 
2 )  <_  pi  <->  ( ( x  +  pi )  /  2 )  <_  pi ) )
88 avgle2 9968 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  pi  e.  RR )  -> 
( x  <_  pi  <->  ( ( x  +  pi )  /  2 )  <_  pi ) )
8928, 73, 88syl2anc 642 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( x  <_  pi  <->  ( ( x  +  pi )  /  2 )  <_  pi ) )
9087, 89bitr4d 247 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( ( ( pi  +  x )  / 
2 )  <_  pi  <->  x  <_  pi ) )
9181, 82, 903imtr3d 258 . . . . . . 7  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( -.  x  <_  pi  ->  x  <_  pi ) )
9291pm2.18d 103 . . . . . 6  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  <_  pi )
9373, 28letri3d 8977 . . . . . 6  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  =  x  <-> 
( pi  <_  x  /\  x  <_  pi ) ) )
9454, 92, 93mpbir2and 888 . . . . 5  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  =  x )
95 simpl 443 . . . . 5  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  ( 2 (,) 4 ) )
9694, 95eqeltrd 2370 . . . 4  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  e.  ( 2 (,) 4 ) )
9794fveq2d 5545 . . . . 5  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( sin `  pi )  =  ( sin `  x ) )
9897, 38eqtrd 2328 . . . 4  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( sin `  pi )  =  0 )
9996, 98jca 518 . . 3  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 ) )
10099rexlimiva 2675 . 2  |-  ( E. x  e.  ( 2 (,) 4 ) ( sin `  x )  =  0  ->  (
pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 ) )
10125, 100ax-mp 8 1  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    T. wtru 1307    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   class class class wbr 4039   `'ccnv 4704   "cima 4708   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756    < clt 8883    <_ cle 8884    / cdiv 9439   2c2 9811   4c4 9813   RR+crp 10370   (,)cioo 10672   [,]cicc 10675   sincsin 12361   cosccos 12362   picpi 12364   -cn->ccncf 18396
This theorem is referenced by:  pigt2lt4  19846  sinpi  19847  pire  19848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator