MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pion Unicode version

Theorem pion 8689
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pion  |-  ( A  e.  N.  ->  A  e.  On )

Proof of Theorem pion
StepHypRef Expression
1 pinn 8688 . 2  |-  ( A  e.  N.  ->  A  e.  om )
2 nnon 4791 . 2  |-  ( A  e.  om  ->  A  e.  On )
31, 2syl 16 1  |-  ( A  e.  N.  ->  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   Oncon0 4522   omcom 4785   N.cnpi 8652
This theorem is referenced by:  indpi  8717  nqereu  8739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-tr 4244  df-eprel 4435  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-ni 8682
  Copyright terms: Public domain W3C validator