MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1fval Unicode version

Theorem pj1fval 15213
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v  |-  B  =  ( Base `  G
)
pj1fval.a  |-  .+  =  ( +g  `  G )
pj1fval.s  |-  .(+)  =  (
LSSum `  G )
pj1fval.p  |-  P  =  ( proj 1 `  G )
Assertion
Ref Expression
pj1fval  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T E. y  e.  U  z  =  ( x  .+  y ) ) ) )
Distinct variable groups:    z,  .+    x, y, z, B    x, T, y, z    x, U, y, z    x,  .(+) , y, z    x, G, y, z    x, V, y, z
Allowed substitution hints:    P( x, y, z)    .+ ( x, y)

Proof of Theorem pj1fval
Dummy variables  t 
g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1fval.p . . 3  |-  P  =  ( proj 1 `  G )
2 elex 2881 . . . . 5  |-  ( G  e.  V  ->  G  e.  _V )
323ad2ant1 977 . . . 4  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  G  e.  _V )
4 fveq2 5632 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
5 pj1fval.v . . . . . . . 8  |-  B  =  ( Base `  G
)
64, 5syl6eqr 2416 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  B )
76pweqd 3719 . . . . . 6  |-  ( g  =  G  ->  ~P ( Base `  g )  =  ~P B )
8 fveq2 5632 . . . . . . . . 9  |-  ( g  =  G  ->  ( LSSum `  g )  =  ( LSSum `  G )
)
9 pj1fval.s . . . . . . . . 9  |-  .(+)  =  (
LSSum `  G )
108, 9syl6eqr 2416 . . . . . . . 8  |-  ( g  =  G  ->  ( LSSum `  g )  = 
.(+)  )
1110oveqd 5998 . . . . . . 7  |-  ( g  =  G  ->  (
t ( LSSum `  g
) u )  =  ( t  .(+)  u ) )
12 fveq2 5632 . . . . . . . . . . . 12  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
13 pj1fval.a . . . . . . . . . . . 12  |-  .+  =  ( +g  `  G )
1412, 13syl6eqr 2416 . . . . . . . . . . 11  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
1514oveqd 5998 . . . . . . . . . 10  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
1615eqeq2d 2377 . . . . . . . . 9  |-  ( g  =  G  ->  (
z  =  ( x ( +g  `  g
) y )  <->  z  =  ( x  .+  y ) ) )
1716rexbidv 2649 . . . . . . . 8  |-  ( g  =  G  ->  ( E. y  e.  u  z  =  ( x
( +g  `  g ) y )  <->  E. y  e.  u  z  =  ( x  .+  y ) ) )
1817riotabidv 6448 . . . . . . 7  |-  ( g  =  G  ->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x ( +g  `  g ) y ) )  =  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) )
1911, 18mpteq12dv 4200 . . . . . 6  |-  ( g  =  G  ->  (
z  e.  ( t ( LSSum `  g )
u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x ( +g  `  g ) y ) ) )  =  ( z  e.  ( t 
.(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) ) )
207, 7, 19mpt2eq123dv 6036 . . . . 5  |-  ( g  =  G  ->  (
t  e.  ~P ( Base `  g ) ,  u  e.  ~P ( Base `  g )  |->  ( z  e.  ( t ( LSSum `  g )
u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x ( +g  `  g ) y ) ) ) )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
21 df-pj1 15158 . . . . 5  |-  proj 1  =  ( g  e. 
_V  |->  ( t  e. 
~P ( Base `  g
) ,  u  e. 
~P ( Base `  g
)  |->  ( z  e.  ( t ( LSSum `  g ) u ) 
|->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x
( +g  `  g ) y ) ) ) ) )
22 fvex 5646 . . . . . . . 8  |-  ( Base `  G )  e.  _V
235, 22eqeltri 2436 . . . . . . 7  |-  B  e. 
_V
2423pwex 4295 . . . . . 6  |-  ~P B  e.  _V
2524, 24mpt2ex 6325 . . . . 5  |-  ( t  e.  ~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) ) )  e.  _V
2620, 21, 25fvmpt 5709 . . . 4  |-  ( G  e.  _V  ->  ( proj 1 `  G )  =  ( t  e. 
~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
273, 26syl 15 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( proj 1 `  G )  =  ( t  e. 
~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
281, 27syl5eq 2410 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  P  =  ( t  e. 
~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
29 oveq12 5990 . . . 4  |-  ( ( t  =  T  /\  u  =  U )  ->  ( t  .(+)  u )  =  ( T  .(+)  U ) )
3029adantl 452 . . 3  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  (
t  .(+)  u )  =  ( T  .(+)  U ) )
31 simprl 732 . . . 4  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  t  =  T )
32 simprr 733 . . . . 5  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  u  =  U )
3332rexeqdv 2828 . . . 4  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  ( E. y  e.  u  z  =  ( x  .+  y )  <->  E. y  e.  U  z  =  ( x  .+  y ) ) )
3431, 33riotaeqbidv 6449 . . 3  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) )  =  ( iota_ x  e.  T E. y  e.  U  z  =  ( x  .+  y ) ) )
3530, 34mpteq12dv 4200 . 2  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  (
z  e.  ( t 
.(+)  u )  |->  ( iota_ x  e.  t E. y  e.  u  z  =  ( x  .+  y ) ) )  =  ( z  e.  ( T 
.(+)  U )  |->  ( iota_ x  e.  T E. y  e.  U  z  =  ( x  .+  y ) ) ) )
36 simp2 957 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  T  C_  B )
3723elpw2 4277 . . 3  |-  ( T  e.  ~P B  <->  T  C_  B
)
3836, 37sylibr 203 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  T  e.  ~P B )
39 simp3 958 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  U  C_  B )
4023elpw2 4277 . . 3  |-  ( U  e.  ~P B  <->  U  C_  B
)
4139, 40sylibr 203 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  U  e.  ~P B )
42 ovex 6006 . . . 4  |-  ( T 
.(+)  U )  e.  _V
4342mptex 5866 . . 3  |-  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T E. y  e.  U  z  =  ( x  .+  y ) ) )  e.  _V
4443a1i 10 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  (
z  e.  ( T 
.(+)  U )  |->  ( iota_ x  e.  T E. y  e.  U  z  =  ( x  .+  y ) ) )  e.  _V )
4528, 35, 38, 41, 44ovmpt2d 6101 1  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T E. y  e.  U  z  =  ( x  .+  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   E.wrex 2629   _Vcvv 2873    C_ wss 3238   ~Pcpw 3714    e. cmpt 4179   ` cfv 5358  (class class class)co 5981    e. cmpt2 5983   iota_crio 6439   Basecbs 13356   +g cplusg 13416   LSSumclsm 15155   proj
1cpj1 15156
This theorem is referenced by:  pj1val  15214  pj1f  15216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-pj1 15158
  Copyright terms: Public domain W3C validator