MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1id Structured version   Unicode version

Theorem pj1id 15336
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a  |-  .+  =  ( +g  `  G )
pj1eu.s  |-  .(+)  =  (
LSSum `  G )
pj1eu.o  |-  .0.  =  ( 0g `  G )
pj1eu.z  |-  Z  =  (Cntz `  G )
pj1eu.2  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
pj1eu.3  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pj1eu.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
pj1eu.5  |-  ( ph  ->  T  C_  ( Z `  U ) )
pj1f.p  |-  P  =  ( proj 1 `  G )
Assertion
Ref Expression
pj1id  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  X  =  ( ( ( T P U ) `  X )  .+  (
( U P T ) `  X ) ) )

Proof of Theorem pj1id
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . . . . 7  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
2 subgrcl 14954 . . . . . . 7  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
31, 2syl 16 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 eqid 2438 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
54subgss 14950 . . . . . . 7  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
61, 5syl 16 . . . . . 6  |-  ( ph  ->  T  C_  ( Base `  G ) )
7 pj1eu.3 . . . . . . 7  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
84subgss 14950 . . . . . . 7  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
97, 8syl 16 . . . . . 6  |-  ( ph  ->  U  C_  ( Base `  G ) )
103, 6, 93jca 1135 . . . . 5  |-  ( ph  ->  ( G  e.  Grp  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) ) )
11 pj1eu.a . . . . . 6  |-  .+  =  ( +g  `  G )
12 pj1eu.s . . . . . 6  |-  .(+)  =  (
LSSum `  G )
13 pj1f.p . . . . . 6  |-  P  =  ( proj 1 `  G )
144, 11, 12, 13pj1val 15332 . . . . 5  |-  ( ( ( G  e.  Grp  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  =  (
iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) ) )
1510, 14sylan 459 . . . 4  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  =  (
iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) ) )
16 pj1eu.o . . . . . 6  |-  .0.  =  ( 0g `  G )
17 pj1eu.z . . . . . 6  |-  Z  =  (Cntz `  G )
18 pj1eu.4 . . . . . 6  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
19 pj1eu.5 . . . . . 6  |-  ( ph  ->  T  C_  ( Z `  U ) )
2011, 12, 16, 17, 1, 7, 18, 19pj1eu 15333 . . . . 5  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  E! x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )
21 riotacl2 6566 . . . . 5  |-  ( E! x  e.  T  E. y  e.  U  X  =  ( x  .+  y )  ->  ( iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) )  e. 
{ x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
2220, 21syl 16 . . . 4  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
2315, 22eqeltrd 2512 . . 3  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  e.  {
x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
24 oveq1 6091 . . . . . . 7  |-  ( x  =  ( ( T P U ) `  X )  ->  (
x  .+  y )  =  ( ( ( T P U ) `
 X )  .+  y ) )
2524eqeq2d 2449 . . . . . 6  |-  ( x  =  ( ( T P U ) `  X )  ->  ( X  =  ( x  .+  y )  <->  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2625rexbidv 2728 . . . . 5  |-  ( x  =  ( ( T P U ) `  X )  ->  ( E. y  e.  U  X  =  ( x  .+  y )  <->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2726elrab 3094 . . . 4  |-  ( ( ( T P U ) `  X )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) }  <->  ( ( ( T P U ) `
 X )  e.  T  /\  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2827simprbi 452 . . 3  |-  ( ( ( T P U ) `  X )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) }  ->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) )
2923, 28syl 16 . 2  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) )
30 simprr 735 . . 3  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( ( ( T P U ) `  X
)  .+  y )
)
313ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  G  e.  Grp )
329ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  U  C_  ( Base `  G ) )
336ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  T  C_  ( Base `  G ) )
34 simplr 733 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  e.  ( T  .(+)  U )
)
3512, 17lsmcom2 15294 . . . . . . . . 9  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  =  ( U 
.(+)  T ) )
361, 7, 19, 35syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( T  .(+)  U )  =  ( U  .(+)  T ) )
3736ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( T  .(+)  U )  =  ( U 
.(+)  T ) )
3834, 37eleqtrd 2514 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  e.  ( U  .(+)  T )
)
394, 11, 12, 13pj1val 15332 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  U  C_  ( Base `  G )  /\  T  C_  ( Base `  G
) )  /\  X  e.  ( U  .(+)  T ) )  ->  ( ( U P T ) `  X )  =  (
iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) ) )
4031, 32, 33, 38, 39syl31anc 1188 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( U P T ) `  X )  =  (
iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) ) )
4111, 12, 16, 17, 1, 7, 18, 19, 13pj1f 15334 . . . . . . . . 9  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )
4241ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( T P U ) : ( T  .(+)  U ) --> T )
4342, 34ffvelrnd 5874 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( T P U ) `  X )  e.  T
)
4419ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  T  C_  ( Z `  U )
)
4544, 43sseldd 3351 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( T P U ) `  X )  e.  ( Z `  U ) )
46 simprl 734 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  y  e.  U
)
4711, 17cntzi 15133 . . . . . . . . 9  |-  ( ( ( ( T P U ) `  X
)  e.  ( Z `
 U )  /\  y  e.  U )  ->  ( ( ( T P U ) `  X )  .+  y
)  =  ( y 
.+  ( ( T P U ) `  X ) ) )
4845, 46, 47syl2anc 644 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( ( T P U ) `
 X )  .+  y )  =  ( y  .+  ( ( T P U ) `
 X ) ) )
4930, 48eqtrd 2470 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( y  .+  ( ( T P U ) `
 X ) ) )
50 oveq2 6092 . . . . . . . . 9  |-  ( v  =  ( ( T P U ) `  X )  ->  (
y  .+  v )  =  ( y  .+  ( ( T P U ) `  X
) ) )
5150eqeq2d 2449 . . . . . . . 8  |-  ( v  =  ( ( T P U ) `  X )  ->  ( X  =  ( y  .+  v )  <->  X  =  ( y  .+  (
( T P U ) `  X ) ) ) )
5251rspcev 3054 . . . . . . 7  |-  ( ( ( ( T P U ) `  X
)  e.  T  /\  X  =  ( y  .+  ( ( T P U ) `  X
) ) )  ->  E. v  e.  T  X  =  ( y  .+  v ) )
5343, 49, 52syl2anc 644 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  E. v  e.  T  X  =  ( y  .+  v ) )
54 simpll 732 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ph )
55 incom 3535 . . . . . . . . . 10  |-  ( U  i^i  T )  =  ( T  i^i  U
)
5655, 18syl5eq 2482 . . . . . . . . 9  |-  ( ph  ->  ( U  i^i  T
)  =  {  .0.  } )
5717, 1, 7, 19cntzrecd 15315 . . . . . . . . 9  |-  ( ph  ->  U  C_  ( Z `  T ) )
5811, 12, 16, 17, 7, 1, 56, 57pj1eu 15333 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( U  .(+)  T ) )  ->  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )
5954, 38, 58syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )
60 oveq1 6091 . . . . . . . . . 10  |-  ( u  =  y  ->  (
u  .+  v )  =  ( y  .+  v ) )
6160eqeq2d 2449 . . . . . . . . 9  |-  ( u  =  y  ->  ( X  =  ( u  .+  v )  <->  X  =  ( y  .+  v
) ) )
6261rexbidv 2728 . . . . . . . 8  |-  ( u  =  y  ->  ( E. v  e.  T  X  =  ( u  .+  v )  <->  E. v  e.  T  X  =  ( y  .+  v
) ) )
6362riota2 6575 . . . . . . 7  |-  ( ( y  e.  U  /\  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )  -> 
( E. v  e.  T  X  =  ( y  .+  v )  <-> 
( iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) )  =  y ) )
6446, 59, 63syl2anc 644 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( E. v  e.  T  X  =  ( y  .+  v
)  <->  ( iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) )  =  y ) )
6553, 64mpbid 203 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) )  =  y )
6640, 65eqtrd 2470 . . . 4  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( U P T ) `  X )  =  y )
6766oveq2d 6100 . . 3  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( ( T P U ) `
 X )  .+  ( ( U P T ) `  X
) )  =  ( ( ( T P U ) `  X
)  .+  y )
)
6830, 67eqtr4d 2473 . 2  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( ( ( T P U ) `  X
)  .+  ( ( U P T ) `  X ) ) )
6929, 68rexlimddv 2836 1  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  X  =  ( ( ( T P U ) `  X )  .+  (
( U P T ) `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2708   E!wreu 2709   {crab 2711    i^i cin 3321    C_ wss 3322   {csn 3816   -->wf 5453   ` cfv 5457  (class class class)co 6084   iota_crio 6545   Basecbs 13474   +g cplusg 13534   0gc0g 13728   Grpcgrp 14690  SubGrpcsubg 14943  Cntzccntz 15119   LSSumclsm 15273   proj
1cpj1 15274
This theorem is referenced by:  pj1eq  15337  pj1ghm  15340  pj1lmhm  16177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-cntz 15121  df-lsm 15275  df-pj1 15276
  Copyright terms: Public domain W3C validator