MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1id Unicode version

Theorem pj1id 15107
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a  |-  .+  =  ( +g  `  G )
pj1eu.s  |-  .(+)  =  (
LSSum `  G )
pj1eu.o  |-  .0.  =  ( 0g `  G )
pj1eu.z  |-  Z  =  (Cntz `  G )
pj1eu.2  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
pj1eu.3  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pj1eu.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
pj1eu.5  |-  ( ph  ->  T  C_  ( Z `  U ) )
pj1f.p  |-  P  =  ( proj 1 `  G )
Assertion
Ref Expression
pj1id  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  X  =  ( ( ( T P U ) `  X )  .+  (
( U P T ) `  X ) ) )

Proof of Theorem pj1id
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . . . . 7  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
2 subgrcl 14725 . . . . . . 7  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
31, 2syl 15 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 eqid 2358 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
54subgss 14721 . . . . . . 7  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
61, 5syl 15 . . . . . 6  |-  ( ph  ->  T  C_  ( Base `  G ) )
7 pj1eu.3 . . . . . . 7  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
84subgss 14721 . . . . . . 7  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
97, 8syl 15 . . . . . 6  |-  ( ph  ->  U  C_  ( Base `  G ) )
103, 6, 93jca 1132 . . . . 5  |-  ( ph  ->  ( G  e.  Grp  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) ) )
11 pj1eu.a . . . . . 6  |-  .+  =  ( +g  `  G )
12 pj1eu.s . . . . . 6  |-  .(+)  =  (
LSSum `  G )
13 pj1f.p . . . . . 6  |-  P  =  ( proj 1 `  G )
144, 11, 12, 13pj1val 15103 . . . . 5  |-  ( ( ( G  e.  Grp  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  =  (
iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) ) )
1510, 14sylan 457 . . . 4  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  =  (
iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) ) )
16 pj1eu.o . . . . . 6  |-  .0.  =  ( 0g `  G )
17 pj1eu.z . . . . . 6  |-  Z  =  (Cntz `  G )
18 pj1eu.4 . . . . . 6  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
19 pj1eu.5 . . . . . 6  |-  ( ph  ->  T  C_  ( Z `  U ) )
2011, 12, 16, 17, 1, 7, 18, 19pj1eu 15104 . . . . 5  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  E! x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )
21 riotacl2 6405 . . . . 5  |-  ( E! x  e.  T  E. y  e.  U  X  =  ( x  .+  y )  ->  ( iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) )  e. 
{ x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
2220, 21syl 15 . . . 4  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( iota_ x  e.  T E. y  e.  U  X  =  ( x  .+  y ) )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
2315, 22eqeltrd 2432 . . 3  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  e.  {
x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
24 oveq1 5952 . . . . . . 7  |-  ( x  =  ( ( T P U ) `  X )  ->  (
x  .+  y )  =  ( ( ( T P U ) `
 X )  .+  y ) )
2524eqeq2d 2369 . . . . . 6  |-  ( x  =  ( ( T P U ) `  X )  ->  ( X  =  ( x  .+  y )  <->  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2625rexbidv 2640 . . . . 5  |-  ( x  =  ( ( T P U ) `  X )  ->  ( E. y  e.  U  X  =  ( x  .+  y )  <->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2726elrab 2999 . . . 4  |-  ( ( ( T P U ) `  X )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) }  <->  ( ( ( T P U ) `
 X )  e.  T  /\  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2827simprbi 450 . . 3  |-  ( ( ( T P U ) `  X )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) }  ->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) )
2923, 28syl 15 . 2  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) )
30 simprr 733 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( ( ( T P U ) `  X
)  .+  y )
)
313ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  G  e.  Grp )
329ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  U  C_  ( Base `  G ) )
336ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  T  C_  ( Base `  G ) )
34 simplr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  e.  ( T  .(+)  U )
)
3512, 17lsmcom2 15065 . . . . . . . . . . 11  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  =  ( U 
.(+)  T ) )
361, 7, 19, 35syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( T  .(+)  U )  =  ( U  .(+)  T ) )
3736ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( T  .(+)  U )  =  ( U 
.(+)  T ) )
3834, 37eleqtrd 2434 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  e.  ( U  .(+)  T )
)
394, 11, 12, 13pj1val 15103 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  U  C_  ( Base `  G )  /\  T  C_  ( Base `  G
) )  /\  X  e.  ( U  .(+)  T ) )  ->  ( ( U P T ) `  X )  =  (
iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) ) )
4031, 32, 33, 38, 39syl31anc 1185 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( U P T ) `  X )  =  (
iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) ) )
4111, 12, 16, 17, 1, 7, 18, 19, 13pj1f 15105 . . . . . . . . . . 11  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )
4241ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( T P U ) : ( T  .(+)  U ) --> T )
43 ffvelrn 5746 . . . . . . . . . 10  |-  ( ( ( T P U ) : ( T 
.(+)  U ) --> T  /\  X  e.  ( T  .(+) 
U ) )  -> 
( ( T P U ) `  X
)  e.  T )
4442, 34, 43syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( T P U ) `  X )  e.  T
)
4519ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  T  C_  ( Z `  U )
)
4645, 44sseldd 3257 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( T P U ) `  X )  e.  ( Z `  U ) )
47 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  y  e.  U
)
4811, 17cntzi 14904 . . . . . . . . . . 11  |-  ( ( ( ( T P U ) `  X
)  e.  ( Z `
 U )  /\  y  e.  U )  ->  ( ( ( T P U ) `  X )  .+  y
)  =  ( y 
.+  ( ( T P U ) `  X ) ) )
4946, 47, 48syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( ( T P U ) `
 X )  .+  y )  =  ( y  .+  ( ( T P U ) `
 X ) ) )
5030, 49eqtrd 2390 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( y  .+  ( ( T P U ) `
 X ) ) )
51 oveq2 5953 . . . . . . . . . . 11  |-  ( v  =  ( ( T P U ) `  X )  ->  (
y  .+  v )  =  ( y  .+  ( ( T P U ) `  X
) ) )
5251eqeq2d 2369 . . . . . . . . . 10  |-  ( v  =  ( ( T P U ) `  X )  ->  ( X  =  ( y  .+  v )  <->  X  =  ( y  .+  (
( T P U ) `  X ) ) ) )
5352rspcev 2960 . . . . . . . . 9  |-  ( ( ( ( T P U ) `  X
)  e.  T  /\  X  =  ( y  .+  ( ( T P U ) `  X
) ) )  ->  E. v  e.  T  X  =  ( y  .+  v ) )
5444, 50, 53syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  E. v  e.  T  X  =  ( y  .+  v ) )
55 simpll 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ph )
56 incom 3437 . . . . . . . . . . . 12  |-  ( U  i^i  T )  =  ( T  i^i  U
)
5756, 18syl5eq 2402 . . . . . . . . . . 11  |-  ( ph  ->  ( U  i^i  T
)  =  {  .0.  } )
5817, 1, 7, 19cntzrecd 15086 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  ( Z `  T ) )
5911, 12, 16, 17, 7, 1, 57, 58pj1eu 15104 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  ( U  .(+)  T ) )  ->  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )
6055, 38, 59syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )
61 oveq1 5952 . . . . . . . . . . . 12  |-  ( u  =  y  ->  (
u  .+  v )  =  ( y  .+  v ) )
6261eqeq2d 2369 . . . . . . . . . . 11  |-  ( u  =  y  ->  ( X  =  ( u  .+  v )  <->  X  =  ( y  .+  v
) ) )
6362rexbidv 2640 . . . . . . . . . 10  |-  ( u  =  y  ->  ( E. v  e.  T  X  =  ( u  .+  v )  <->  E. v  e.  T  X  =  ( y  .+  v
) ) )
6463riota2 6414 . . . . . . . . 9  |-  ( ( y  e.  U  /\  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )  -> 
( E. v  e.  T  X  =  ( y  .+  v )  <-> 
( iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) )  =  y ) )
6547, 60, 64syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( E. v  e.  T  X  =  ( y  .+  v
)  <->  ( iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) )  =  y ) )
6654, 65mpbid 201 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( iota_ u  e.  U E. v  e.  T  X  =  ( u  .+  v ) )  =  y )
6740, 66eqtrd 2390 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( U P T ) `  X )  =  y )
6867oveq2d 5961 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( ( T P U ) `
 X )  .+  ( ( U P T ) `  X
) )  =  ( ( ( T P U ) `  X
)  .+  y )
)
6930, 68eqtr4d 2393 . . . 4  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( ( ( T P U ) `  X
)  .+  ( ( U P T ) `  X ) ) )
7069expr 598 . . 3  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  y  e.  U )  ->  ( X  =  ( (
( T P U ) `  X ) 
.+  y )  ->  X  =  ( (
( T P U ) `  X ) 
.+  ( ( U P T ) `  X ) ) ) )
7170rexlimdva 2743 . 2  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( E. y  e.  U  X  =  ( ( ( T P U ) `
 X )  .+  y )  ->  X  =  ( ( ( T P U ) `
 X )  .+  ( ( U P T ) `  X
) ) ) )
7229, 71mpd 14 1  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  X  =  ( ( ( T P U ) `  X )  .+  (
( U P T ) `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   E.wrex 2620   E!wreu 2621   {crab 2623    i^i cin 3227    C_ wss 3228   {csn 3716   -->wf 5333   ` cfv 5337  (class class class)co 5945   iota_crio 6384   Basecbs 13245   +g cplusg 13305   0gc0g 13499   Grpcgrp 14461  SubGrpcsubg 14714  Cntzccntz 14890   LSSumclsm 15044   proj
1cpj1 15045
This theorem is referenced by:  pj1eq  15108  pj1ghm  15111  pj1lmhm  15952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-0g 13503  df-mnd 14466  df-grp 14588  df-minusg 14589  df-sbg 14590  df-subg 14717  df-cntz 14892  df-lsm 15046  df-pj1 15047
  Copyright terms: Public domain W3C validator