MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm2 Unicode version

Theorem pj1lmhm2 16101
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l  |-  L  =  ( LSubSp `  W )
pj1lmhm.s  |-  .(+)  =  (
LSSum `  W )
pj1lmhm.z  |-  .0.  =  ( 0g `  W )
pj1lmhm.p  |-  P  =  ( proj 1 `  W )
pj1lmhm.1  |-  ( ph  ->  W  e.  LMod )
pj1lmhm.2  |-  ( ph  ->  T  e.  L )
pj1lmhm.3  |-  ( ph  ->  U  e.  L )
pj1lmhm.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
Assertion
Ref Expression
pj1lmhm2  |-  ( ph  ->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  ( Ws  T ) ) )

Proof of Theorem pj1lmhm2
StepHypRef Expression
1 pj1lmhm.l . . 3  |-  L  =  ( LSubSp `  W )
2 pj1lmhm.s . . 3  |-  .(+)  =  (
LSSum `  W )
3 pj1lmhm.z . . 3  |-  .0.  =  ( 0g `  W )
4 pj1lmhm.p . . 3  |-  P  =  ( proj 1 `  W )
5 pj1lmhm.1 . . 3  |-  ( ph  ->  W  e.  LMod )
6 pj1lmhm.2 . . 3  |-  ( ph  ->  T  e.  L )
7 pj1lmhm.3 . . 3  |-  ( ph  ->  U  e.  L )
8 pj1lmhm.4 . . 3  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
91, 2, 3, 4, 5, 6, 7, 8pj1lmhm 16100 . 2  |-  ( ph  ->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W ) )
10 eqid 2388 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
11 eqid 2388 . . . . 5  |-  (Cntz `  W )  =  (Cntz `  W )
121lsssssubg 15962 . . . . . . 7  |-  ( W  e.  LMod  ->  L  C_  (SubGrp `  W ) )
135, 12syl 16 . . . . . 6  |-  ( ph  ->  L  C_  (SubGrp `  W
) )
1413, 6sseldd 3293 . . . . 5  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
1513, 7sseldd 3293 . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
16 lmodabl 15919 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Abel )
175, 16syl 16 . . . . . 6  |-  ( ph  ->  W  e.  Abel )
1811, 17, 14, 15ablcntzd 15400 . . . . 5  |-  ( ph  ->  T  C_  ( (Cntz `  W ) `  U
) )
1910, 2, 3, 11, 14, 15, 8, 18, 4pj1f 15257 . . . 4  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )
20 frn 5538 . . . 4  |-  ( ( T P U ) : ( T  .(+)  U ) --> T  ->  ran  ( T P U ) 
C_  T )
2119, 20syl 16 . . 3  |-  ( ph  ->  ran  ( T P U )  C_  T
)
22 eqid 2388 . . . 4  |-  ( Ws  T )  =  ( Ws  T )
2322, 1reslmhm2b 16058 . . 3  |-  ( ( W  e.  LMod  /\  T  e.  L  /\  ran  ( T P U )  C_  T )  ->  (
( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W )  <->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  ( Ws  T ) ) ) )
245, 6, 21, 23syl3anc 1184 . 2  |-  ( ph  ->  ( ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W )  <-> 
( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  ( Ws  T ) ) ) )
259, 24mpbid 202 1  |-  ( ph  ->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  ( Ws  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717    i^i cin 3263    C_ wss 3264   {csn 3758   ran crn 4820   -->wf 5391   ` cfv 5395  (class class class)co 6021   ↾s cress 13398   +g cplusg 13457   0gc0g 13651  SubGrpcsubg 14866  Cntzccntz 15042   LSSumclsm 15196   proj
1cpj1 15197   Abelcabel 15341   LModclmod 15878   LSubSpclss 15936   LMHom clmhm 16023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-sca 13473  df-vsca 13474  df-0g 13655  df-mnd 14618  df-mhm 14666  df-submnd 14667  df-grp 14740  df-minusg 14741  df-sbg 14742  df-subg 14869  df-ghm 14932  df-cntz 15044  df-lsm 15198  df-pj1 15199  df-cmn 15342  df-abl 15343  df-mgp 15577  df-rng 15591  df-ur 15593  df-lmod 15880  df-lss 15937  df-lmhm 16026
  Copyright terms: Public domain W3C validator