MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm Unicode version

Theorem pjdm 16607
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v  |-  V  =  ( Base `  W
)
pjfval.l  |-  L  =  ( LSubSp `  W )
pjfval.o  |-  ._|_  =  ( ocv `  W )
pjfval.p  |-  P  =  ( proj 1 `  W )
pjfval.k  |-  K  =  ( proj `  W
)
Assertion
Ref Expression
pjdm  |-  ( T  e.  dom  K  <->  ( T  e.  L  /\  ( T P (  ._|_  `  T
) ) : V --> V ) )

Proof of Theorem pjdm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( x  =  T  ->  x  =  T )
2 fveq2 5525 . . . . 5  |-  ( x  =  T  ->  (  ._|_  `  x )  =  (  ._|_  `  T ) )
31, 2oveq12d 5876 . . . 4  |-  ( x  =  T  ->  (
x P (  ._|_  `  x ) )  =  ( T P ( 
._|_  `  T ) ) )
43eleq1d 2349 . . 3  |-  ( x  =  T  ->  (
( x P ( 
._|_  `  x ) )  e.  ( V  ^m  V )  <->  ( T P (  ._|_  `  T
) )  e.  ( V  ^m  V ) ) )
5 pjfval.v . . . . 5  |-  V  =  ( Base `  W
)
6 fvex 5539 . . . . 5  |-  ( Base `  W )  e.  _V
75, 6eqeltri 2353 . . . 4  |-  V  e. 
_V
87, 7elmap 6796 . . 3  |-  ( ( T P (  ._|_  `  T ) )  e.  ( V  ^m  V
)  <->  ( T P (  ._|_  `  T ) ) : V --> V )
94, 8syl6bb 252 . 2  |-  ( x  =  T  ->  (
( x P ( 
._|_  `  x ) )  e.  ( V  ^m  V )  <->  ( T P (  ._|_  `  T
) ) : V --> V ) )
10 cnvin 5088 . . . . . . 7  |-  `' ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )  =  ( `' ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  `' ( _V 
X.  ( V  ^m  V ) ) )
11 cnvxp 5097 . . . . . . . 8  |-  `' ( _V  X.  ( V  ^m  V ) )  =  ( ( V  ^m  V )  X. 
_V )
1211ineq2i 3367 . . . . . . 7  |-  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  `' ( _V  X.  ( V  ^m  V ) ) )  =  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( ( V  ^m  V )  X.  _V ) )
1310, 12eqtri 2303 . . . . . 6  |-  `' ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )  =  ( `' ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( ( V  ^m  V )  X. 
_V ) )
14 pjfval.l . . . . . . . 8  |-  L  =  ( LSubSp `  W )
15 pjfval.o . . . . . . . 8  |-  ._|_  =  ( ocv `  W )
16 pjfval.p . . . . . . . 8  |-  P  =  ( proj 1 `  W )
17 pjfval.k . . . . . . . 8  |-  K  =  ( proj `  W
)
185, 14, 15, 16, 17pjfval 16606 . . . . . . 7  |-  K  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )
1918cnveqi 4856 . . . . . 6  |-  `' K  =  `' ( ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )
20 df-res 4701 . . . . . 6  |-  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  |`  ( V  ^m  V ) )  =  ( `' ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  i^i  ( ( V  ^m  V )  X.  _V ) )
2113, 19, 203eqtr4i 2313 . . . . 5  |-  `' K  =  ( `' ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  |`  ( V  ^m  V
) )
2221rneqi 4905 . . . 4  |-  ran  `' K  =  ran  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  |`  ( V  ^m  V ) )
23 dfdm4 4872 . . . 4  |-  dom  K  =  ran  `' K
24 df-ima 4702 . . . 4  |-  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) ) " ( V  ^m  V ) )  =  ran  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  |`  ( V  ^m  V ) )
2522, 23, 243eqtr4i 2313 . . 3  |-  dom  K  =  ( `' ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )
" ( V  ^m  V ) )
26 eqid 2283 . . . 4  |-  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  =  ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )
2726mptpreima 5166 . . 3  |-  ( `' ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) ) " ( V  ^m  V ) )  =  { x  e.  L  |  ( x P (  ._|_  `  x
) )  e.  ( V  ^m  V ) }
2825, 27eqtri 2303 . 2  |-  dom  K  =  { x  e.  L  |  ( x P (  ._|_  `  x ) )  e.  ( V  ^m  V ) }
299, 28elrab2 2925 1  |-  ( T  e.  dom  K  <->  ( T  e.  L  /\  ( T P (  ._|_  `  T
) ) : V --> V ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    i^i cin 3151    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Basecbs 13148   proj 1cpj1 14946   LSubSpclss 15689   ocvcocv 16560   projcpj 16600
This theorem is referenced by:  pjfval2  16609  pjdm2  16611  pjf  16613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-pj 16603
  Copyright terms: Public domain W3C validator