MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjff Unicode version

Theorem pjff 16628
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
pjf.k  |-  K  =  ( proj `  W
)
Assertion
Ref Expression
pjff  |-  ( W  e.  PreHil  ->  K : dom  K --> ( W LMHom  W ) )

Proof of Theorem pjff
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2 eqid 2296 . . . 4  |-  ( LSSum `  W )  =  (
LSSum `  W )
3 eqid 2296 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
4 eqid 2296 . . . 4  |-  ( proj
1 `  W )  =  ( proj 1 `  W )
5 phllmod 16550 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
65adantr 451 . . . 4  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  ->  W  e.  LMod )
7 eqid 2296 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
8 eqid 2296 . . . . . 6  |-  ( ocv `  W )  =  ( ocv `  W )
9 pjf.k . . . . . 6  |-  K  =  ( proj `  W
)
107, 1, 8, 2, 9pjdm2 16627 . . . . 5  |-  ( W  e.  PreHil  ->  ( x  e. 
dom  K  <->  ( x  e.  ( LSubSp `  W )  /\  ( x ( LSSum `  W ) ( ( ocv `  W ) `
 x ) )  =  ( Base `  W
) ) ) )
1110simprbda 606 . . . 4  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  ->  x  e.  ( LSubSp `  W ) )
127, 1lssss 15710 . . . . . 6  |-  ( x  e.  ( LSubSp `  W
)  ->  x  C_  ( Base `  W ) )
1311, 12syl 15 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  ->  x  C_  ( Base `  W
) )
147, 8, 1ocvlss 16588 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  C_  ( Base `  W
) )  ->  (
( ocv `  W
) `  x )  e.  ( LSubSp `  W )
)
1513, 14syldan 456 . . . 4  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( ( ocv `  W
) `  x )  e.  ( LSubSp `  W )
)
168, 1, 3ocvin 16590 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  e.  ( LSubSp `  W )
)  ->  ( x  i^i  ( ( ocv `  W
) `  x )
)  =  { ( 0g `  W ) } )
1711, 16syldan 456 . . . 4  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( x  i^i  (
( ocv `  W
) `  x )
)  =  { ( 0g `  W ) } )
181, 2, 3, 4, 6, 11, 15, 17pj1lmhm 15869 . . 3  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( x ( proj
1 `  W )
( ( ocv `  W
) `  x )
)  e.  ( ( Ws  ( x ( LSSum `  W ) ( ( ocv `  W ) `
 x ) ) ) LMHom  W ) )
1910simplbda 607 . . . . . 6  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( x ( LSSum `  W ) ( ( ocv `  W ) `
 x ) )  =  ( Base `  W
) )
2019oveq2d 5890 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( Ws  ( x (
LSSum `  W ) ( ( ocv `  W
) `  x )
) )  =  ( Ws  ( Base `  W
) ) )
217ressid 13219 . . . . . 6  |-  ( W  e.  PreHil  ->  ( Ws  ( Base `  W ) )  =  W )
2221adantr 451 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( Ws  ( Base `  W
) )  =  W )
2320, 22eqtrd 2328 . . . 4  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( Ws  ( x (
LSSum `  W ) ( ( ocv `  W
) `  x )
) )  =  W )
2423oveq1d 5889 . . 3  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( ( Ws  ( x ( LSSum `  W )
( ( ocv `  W
) `  x )
) ) LMHom  W )  =  ( W LMHom  W
) )
2518, 24eleqtrd 2372 . 2  |-  ( ( W  e.  PreHil  /\  x  e.  dom  K )  -> 
( x ( proj
1 `  W )
( ( ocv `  W
) `  x )
)  e.  ( W LMHom 
W ) )
268, 4, 9pjfval2 16625 . 2  |-  K  =  ( x  e.  dom  K 
|->  ( x ( proj
1 `  W )
( ( ocv `  W
) `  x )
) )
2725, 26fmptd 5700 1  |-  ( W  e.  PreHil  ->  K : dom  K --> ( W LMHom  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    i^i cin 3164    C_ wss 3165   {csn 3653   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   ↾s cress 13165   0gc0g 13416   LSSumclsm 14961   proj
1cpj1 14962   LModclmod 15643   LSubSpclss 15705   LMHom clmhm 15792   PreHilcphl 16544   ocvcocv 16576   projcpj 16616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-sca 13240  df-vsca 13241  df-0g 13420  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-ghm 14697  df-cntz 14809  df-lsm 14963  df-pj1 14964  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706  df-lmhm 15795  df-lvec 15872  df-sra 15941  df-rgmod 15942  df-phl 16546  df-ocv 16579  df-pj 16619
  Copyright terms: Public domain W3C validator