HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthmo Structured version   Unicode version

Theorem pjhthmo 22796
Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhthmo  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  E* x ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem pjhthmo
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 798 . . . 4  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  <-> 
( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) )  /\  (
z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) ) )
2 reeanv 2867 . . . . . 6  |-  ( E. y  e.  B  E. w  e.  B  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  <->  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )
3 simpll1 996 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  A  e.  SH )
4 simpll2 997 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  B  e.  SH )
5 simpll3 998 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
( A  i^i  B
)  =  0H )
6 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  x  e.  A )
7 simprll 739 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
y  e.  B )
8 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
z  e.  A )
9 simprlr 740 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  w  e.  B )
10 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  C  =  ( x  +h  y ) )
11 simprrr 742 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  C  =  ( z  +h  w ) )
1210, 11eqtr3d 2469 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
( x  +h  y
)  =  ( z  +h  w ) )
133, 4, 5, 6, 7, 8, 9, 12shuni 22794 . . . . . . . . 9  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
( x  =  z  /\  y  =  w ) )
1413simpld 446 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  x  =  z )
1514exp32 589 . . . . . . 7  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( y  e.  B  /\  w  e.  B
)  ->  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z )
) )
1615rexlimdvv 2828 . . . . . 6  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( E. y  e.  B  E. w  e.  B  ( C  =  (
x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z ) )
172, 16syl5bir 210 . . . . 5  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) )
1817expimpd 587 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  (
( ( x  e.  A  /\  z  e.  A )  /\  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
191, 18syl5bir 210 . . 3  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  (
( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) )  /\  (
z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
2019alrimivv 1642 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  A. x A. z ( ( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y ) )  /\  ( z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
21 eleq1 2495 . . . 4  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
22 oveq1 6080 . . . . . . 7  |-  ( x  =  z  ->  (
x  +h  y )  =  ( z  +h  y ) )
2322eqeq2d 2446 . . . . . 6  |-  ( x  =  z  ->  ( C  =  ( x  +h  y )  <->  C  =  ( z  +h  y
) ) )
2423rexbidv 2718 . . . . 5  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. y  e.  B  C  =  ( z  +h  y
) ) )
25 oveq2 6081 . . . . . . 7  |-  ( y  =  w  ->  (
z  +h  y )  =  ( z  +h  w ) )
2625eqeq2d 2446 . . . . . 6  |-  ( y  =  w  ->  ( C  =  ( z  +h  y )  <->  C  =  ( z  +h  w
) ) )
2726cbvrexv 2925 . . . . 5  |-  ( E. y  e.  B  C  =  ( z  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) )
2824, 27syl6bb 253 . . . 4  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) ) )
2921, 28anbi12d 692 . . 3  |-  ( x  =  z  ->  (
( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y ) )  <->  ( z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w
) ) ) )
3029mo4 2313 . 2  |-  ( E* x ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) )  <->  A. x A. z ( ( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y ) )  /\  ( z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
3120, 30sylibr 204 1  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  E* x ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   E*wmo 2281   E.wrex 2698    i^i cin 3311  (class class class)co 6073    +h cva 22415   SHcsh 22423   0Hc0h 22430
This theorem is referenced by:  pjhtheu  22888  pjpreeq  22892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-hilex 22494  ax-hfvadd 22495  ax-hvcom 22496  ax-hvass 22497  ax-hv0cl 22498  ax-hvaddid 22499  ax-hfvmul 22500  ax-hvmulid 22501  ax-hvmulass 22502  ax-hvdistr1 22503  ax-hvdistr2 22504  ax-hvmul0 22505
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-hvsub 22466  df-sh 22701  df-ch0 22747
  Copyright terms: Public domain W3C validator