HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjspansn Unicode version

Theorem pjspansn 22156
Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjspansn  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  (
( proj  h `  ( span `  { A }
) ) `  B
)  =  ( ( ( B  .ih  A
)  /  ( (
normh `  A ) ^
2 ) )  .h  A ) )

Proof of Theorem pjspansn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 spansnch 22139 . . . 4  |-  ( A  e.  ~H  ->  ( span `  { A }
)  e.  CH )
213ad2ant1 976 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  ( span `  { A }
)  e.  CH )
3 simp2 956 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  B  e.  ~H )
4 eqid 2283 . . . . 5  |-  ( (
proj  h `  ( span `  { A } ) ) `  B )  =  ( ( proj 
h `  ( span `  { A } ) ) `  B )
5 pjeq 21978 . . . . 5  |-  ( ( ( span `  { A } )  e.  CH  /\  B  e.  ~H )  ->  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  =  ( ( proj 
h `  ( span `  { A } ) ) `  B )  <-> 
( ( ( proj 
h `  ( span `  { A } ) ) `  B )  e.  ( span `  { A } )  /\  E. y  e.  ( _|_ `  ( span `  { A } ) ) B  =  ( ( (
proj  h `  ( span `  { A } ) ) `  B )  +h  y ) ) ) )
64, 5mpbii 202 . . . 4  |-  ( ( ( span `  { A } )  e.  CH  /\  B  e.  ~H )  ->  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  e.  ( span `  { A } )  /\  E. y  e.  ( _|_ `  ( span `  { A } ) ) B  =  ( ( (
proj  h `  ( span `  { A } ) ) `  B )  +h  y ) ) )
76simprd 449 . . 3  |-  ( ( ( span `  { A } )  e.  CH  /\  B  e.  ~H )  ->  E. y  e.  ( _|_ `  ( span `  { A } ) ) B  =  ( ( ( proj  h `  ( span `  { A } ) ) `  B )  +h  y
) )
82, 3, 7syl2anc 642 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ( _|_ `  ( span `  { A }
) ) B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) )
9 oveq1 5865 . . . . . . . . 9  |-  ( B  =  ( ( (
proj  h `  ( span `  { A } ) ) `  B )  +h  y )  -> 
( B  .ih  A
)  =  ( ( ( ( proj  h `  ( span `  { A } ) ) `  B )  +h  y
)  .ih  A )
)
109ad2antll 709 . . . . . . . 8  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( B  .ih  A )  =  ( ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y )  .ih  A ) )
11 pjhcl 21980 . . . . . . . . . . . . 13  |-  ( ( ( span `  { A } )  e.  CH  /\  B  e.  ~H )  ->  ( ( proj  h `  ( span `  { A } ) ) `  B )  e.  ~H )
122, 3, 11syl2anc 642 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  (
( proj  h `  ( span `  { A }
) ) `  B
)  e.  ~H )
1312adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( proj 
h `  ( span `  { A } ) ) `  B )  e.  ~H )
14 choccl 21885 . . . . . . . . . . . . . 14  |-  ( (
span `  { A } )  e.  CH  ->  ( _|_ `  ( span `  { A }
) )  e.  CH )
151, 14syl 15 . . . . . . . . . . . . 13  |-  ( A  e.  ~H  ->  ( _|_ `  ( span `  { A } ) )  e. 
CH )
16153ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  ( _|_ `  ( span `  { A } ) )  e. 
CH )
17 chel 21810 . . . . . . . . . . . 12  |-  ( ( ( _|_ `  ( span `  { A }
) )  e.  CH  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  y  e.  ~H )
1816, 17sylan 457 . . . . . . . . . . 11  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  y  e.  ~H )
19 simpl1 958 . . . . . . . . . . 11  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  A  e.  ~H )
20 ax-his2 21662 . . . . . . . . . . 11  |-  ( ( ( ( proj  h `  ( span `  { A } ) ) `  B )  e.  ~H  /\  y  e.  ~H  /\  A  e.  ~H )  ->  ( ( ( (
proj  h `  ( span `  { A } ) ) `  B )  +h  y )  .ih  A )  =  ( ( ( ( proj  h `  ( span `  { A } ) ) `  B )  .ih  A
)  +  ( y 
.ih  A ) ) )
2113, 18, 19, 20syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( ( ( proj  h `  ( span `  { A }
) ) `  B
)  +h  y ) 
.ih  A )  =  ( ( ( (
proj  h `  ( span `  { A } ) ) `  B ) 
.ih  A )  +  ( y  .ih  A
) ) )
22 spansnsh 22140 . . . . . . . . . . . . . . 15  |-  ( A  e.  ~H  ->  ( span `  { A }
)  e.  SH )
2322adantr 451 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( span `  { A } )  e.  SH )
24 spansnid 22142 . . . . . . . . . . . . . . 15  |-  ( A  e.  ~H  ->  A  e.  ( span `  { A } ) )
2524adantr 451 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  A  e.  (
span `  { A } ) )
26 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  y  e.  ( _|_ `  ( span `  { A } ) ) )
27 shocorth 21871 . . . . . . . . . . . . . . 15  |-  ( (
span `  { A } )  e.  SH  ->  ( ( A  e.  ( span `  { A } )  /\  y  e.  ( _|_ `  ( span `  { A }
) ) )  -> 
( A  .ih  y
)  =  0 ) )
28273impib 1149 . . . . . . . . . . . . . 14  |-  ( ( ( span `  { A } )  e.  SH  /\  A  e.  ( span `  { A } )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( A  .ih  y )  =  0 )
2923, 25, 26, 28syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( A  .ih  y )  =  0 )
3015, 17sylan 457 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  y  e.  ~H )
31 orthcom 21687 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( A  .ih  y )  =  0  <-> 
( y  .ih  A
)  =  0 ) )
3230, 31syldan 456 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( A 
.ih  y )  =  0  <->  ( y  .ih  A )  =  0 ) )
3329, 32mpbid 201 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( y  .ih  A )  =  0 )
34333ad2antl1 1117 . . . . . . . . . . 11  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( y  .ih  A )  =  0 )
3534oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( ( ( proj  h `  ( span `  { A }
) ) `  B
)  .ih  A )  +  ( y  .ih  A ) )  =  ( ( ( ( proj 
h `  ( span `  { A } ) ) `  B ) 
.ih  A )  +  0 ) )
36 hicl 21659 . . . . . . . . . . . 12  |-  ( ( ( ( proj  h `  ( span `  { A } ) ) `  B )  e.  ~H  /\  A  e.  ~H )  ->  ( ( ( proj 
h `  ( span `  { A } ) ) `  B ) 
.ih  A )  e.  CC )
3713, 19, 36syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( (
proj  h `  ( span `  { A } ) ) `  B ) 
.ih  A )  e.  CC )
3837addid1d 9012 . . . . . . . . . 10  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( ( ( proj  h `  ( span `  { A }
) ) `  B
)  .ih  A )  +  0 )  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B ) 
.ih  A ) )
3921, 35, 383eqtrd 2319 . . . . . . . . 9  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( ( ( ( proj  h `  ( span `  { A }
) ) `  B
)  +h  y ) 
.ih  A )  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B ) 
.ih  A ) )
4039adantrr 697 . . . . . . . 8  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( (
( ( proj  h `  ( span `  { A } ) ) `  B )  +h  y
)  .ih  A )  =  ( ( (
proj  h `  ( span `  { A } ) ) `  B ) 
.ih  A ) )
4110, 40eqtrd 2315 . . . . . . 7  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( B  .ih  A )  =  ( ( ( proj  h `  ( span `  { A } ) ) `  B )  .ih  A
) )
4241oveq1d 5873 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( ( B  .ih  A )  / 
( ( normh `  A
) ^ 2 ) )  =  ( ( ( ( proj  h `  ( span `  { A } ) ) `  B )  .ih  A
)  /  ( (
normh `  A ) ^
2 ) ) )
4342oveq1d 5873 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( (
( B  .ih  A
)  /  ( (
normh `  A ) ^
2 ) )  .h  A )  =  ( ( ( ( (
proj  h `  ( span `  { A } ) ) `  B ) 
.ih  A )  / 
( ( normh `  A
) ^ 2 ) )  .h  A ) )
44 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  A  e.  ~H )
45 simpl3 960 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  A  =/=  0h )
46 axpjcl 21979 . . . . . . . 8  |-  ( ( ( span `  { A } )  e.  CH  /\  B  e.  ~H )  ->  ( ( proj  h `  ( span `  { A } ) ) `  B )  e.  (
span `  { A } ) )
472, 3, 46syl2anc 642 . . . . . . 7  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  (
( proj  h `  ( span `  { A }
) ) `  B
)  e.  ( span `  { A } ) )
4847adantr 451 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( ( proj  h `  ( span `  { A } ) ) `  B )  e.  ( span `  { A } ) )
49 normcan 22155 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h  /\  (
( proj  h `  ( span `  { A }
) ) `  B
)  e.  ( span `  { A } ) )  ->  ( (
( ( ( proj 
h `  ( span `  { A } ) ) `  B ) 
.ih  A )  / 
( ( normh `  A
) ^ 2 ) )  .h  A )  =  ( ( proj 
h `  ( span `  { A } ) ) `  B ) )
5044, 45, 48, 49syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( (
( ( ( proj 
h `  ( span `  { A } ) ) `  B ) 
.ih  A )  / 
( ( normh `  A
) ^ 2 ) )  .h  A )  =  ( ( proj 
h `  ( span `  { A } ) ) `  B ) )
5143, 50eqtr2d 2316 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  ( y  e.  ( _|_ `  ( span `  { A } ) )  /\  B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y ) ) )  ->  ( ( proj  h `  ( span `  { A } ) ) `  B )  =  ( ( ( B  .ih  A )  /  ( ( normh `  A ) ^ 2 ) )  .h  A
) )
5251expr 598 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  /\  y  e.  ( _|_ `  ( span `  { A } ) ) )  ->  ( B  =  ( ( ( proj 
h `  ( span `  { A } ) ) `  B )  +h  y )  -> 
( ( proj  h `  ( span `  { A } ) ) `  B )  =  ( ( ( B  .ih  A )  /  ( (
normh `  A ) ^
2 ) )  .h  A ) ) )
5352rexlimdva 2667 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  ( E. y  e.  ( _|_ `  ( span `  { A } ) ) B  =  ( ( (
proj  h `  ( span `  { A } ) ) `  B )  +h  y )  -> 
( ( proj  h `  ( span `  { A } ) ) `  B )  =  ( ( ( B  .ih  A )  /  ( (
normh `  A ) ^
2 ) )  .h  A ) ) )
548, 53mpd 14 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  A  =/=  0h )  ->  (
( proj  h `  ( span `  { A }
) ) `  B
)  =  ( ( ( B  .ih  A
)  /  ( (
normh `  A ) ^
2 ) )  .h  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   {csn 3640   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737    + caddc 8740    / cdiv 9423   2c2 9795   ^cexp 11104   ~Hchil 21499    +h cva 21500    .h csm 21501    .ih csp 21502   normhcno 21503   0hc0v 21504   SHcsh 21508   CHcch 21509   _|_cort 21510   spancspn 21512   proj 
hcpjh 21517
This theorem is referenced by:  kbpj  22536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-lm 16959  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cfil 18681  df-cau 18682  df-cmet 18683  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-ssp 21298  df-ph 21391  df-cbn 21442  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-shs 21887  df-span 21888  df-pjh 21974
  Copyright terms: Public domain W3C validator