Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem1N Structured version   Unicode version

Theorem pl42lem1N 30777
Description: Lemma for pl42N 30781. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b  |-  B  =  ( Base `  K
)
pl42lem.l  |-  .<_  =  ( le `  K )
pl42lem.j  |-  .\/  =  ( join `  K )
pl42lem.m  |-  ./\  =  ( meet `  K )
pl42lem.o  |-  ._|_  =  ( oc `  K )
pl42lem.f  |-  F  =  ( pmap `  K
)
pl42lem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pl42lem1N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  =  ( ( ( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) ) ) )

Proof of Theorem pl42lem1N
StepHypRef Expression
1 simp11 988 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  K  e.  HL )
2 hllat 30162 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  K  e.  Lat )
4 simp12 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  X  e.  B
)
5 simp13 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  Y  e.  B
)
6 pl42lem.b . . . . . . . 8  |-  B  =  ( Base `  K
)
7 pl42lem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
86, 7latjcl 14480 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
93, 4, 5, 8syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( X  .\/  Y )  e.  B )
10 simp21 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  Z  e.  B
)
11 pl42lem.m . . . . . . 7  |-  ./\  =  ( meet `  K )
126, 11latmcl 14481 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
133, 9, 10, 12syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( X 
.\/  Y )  ./\  Z )  e.  B )
14 simp22 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  W  e.  B
)
156, 7latjcl 14480 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  W  e.  B )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
163, 13, 14, 15syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  e.  B )
17 simp23 993 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  V  e.  B
)
18 eqid 2437 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
19 pl42lem.f . . . . 5  |-  F  =  ( pmap `  K
)
206, 11, 18, 19pmapmeet 30571 . . . 4  |-  ( ( K  e.  HL  /\  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W )  e.  B  /\  V  e.  B )  ->  ( F `  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
) )  =  ( ( F `  (
( ( X  .\/  Y )  ./\  Z )  .\/  W ) )  i^i  ( F `  V
) ) )
211, 16, 17, 20syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  =  ( ( F `  ( ( ( X  .\/  Y
)  ./\  Z )  .\/  W ) )  i^i  ( F `  V
) ) )
22 pl42lem.l . . . . . . 7  |-  .<_  =  ( le `  K )
23 hlop 30161 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
241, 23syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  K  e.  OP )
25 pl42lem.o . . . . . . . . 9  |-  ._|_  =  ( oc `  K )
266, 25opoccl 29993 . . . . . . . 8  |-  ( ( K  e.  OP  /\  W  e.  B )  ->  (  ._|_  `  W )  e.  B )
2724, 14, 26syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  (  ._|_  `  W
)  e.  B )
286, 22, 11latmle2 14507 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  .<_  Z )
293, 9, 10, 28syl3anc 1185 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( X 
.\/  Y )  ./\  Z )  .<_  Z )
30 simp3r 987 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  Z  .<_  (  ._|_  `  W ) )
316, 22, 3, 13, 10, 27, 29, 30lattrd 14488 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( X 
.\/  Y )  ./\  Z )  .<_  (  ._|_  `  W ) )
32 pl42lem.p . . . . . . 7  |-  .+  =  ( + P `  K
)
336, 22, 7, 19, 25, 32pmapojoinN 30766 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  W  e.  B )  /\  (
( X  .\/  Y
)  ./\  Z )  .<_  (  ._|_  `  W ) )  ->  ( F `  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) )  =  ( ( F `  ( ( X  .\/  Y ) 
./\  Z ) ) 
.+  ( F `  W ) ) )
341, 13, 14, 31, 33syl31anc 1188 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) )  =  ( ( F `  ( ( X  .\/  Y ) 
./\  Z ) ) 
.+  ( F `  W ) ) )
356, 11, 18, 19pmapmeet 30571 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z ) )  =  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z ) ) )
361, 9, 10, 35syl3anc 1185 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  ( X 
.\/  Y ) )  i^i  ( F `  Z ) ) )
37 simp3l 986 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  X  .<_  (  ._|_  `  Y ) )
386, 22, 7, 19, 25, 32pmapojoinN 30766 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  (  ._|_  `  Y ) )  -> 
( F `  ( X  .\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )
391, 4, 5, 37, 38syl31anc 1188 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( X  .\/  Y ) )  =  ( ( F `  X ) 
.+  ( F `  Y ) ) )
4039ineq1d 3542 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( F `
 ( X  .\/  Y ) )  i^i  ( F `  Z )
)  =  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) ) )
4136, 40eqtrd 2469 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) ) )
4241oveq1d 6097 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( F `
 ( ( X 
.\/  Y )  ./\  Z ) )  .+  ( F `  W )
)  =  ( ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) ) )
4334, 42eqtrd 2469 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) )  =  ( ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) ) )
4443ineq1d 3542 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( F `
 ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W ) )  i^i  ( F `  V )
)  =  ( ( ( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) ) )
4521, 44eqtrd 2469 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  =  ( ( ( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) ) )
46453expia 1156 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  =  ( ( ( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    i^i cin 3320   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   Basecbs 13470   lecple 13537   occoc 13538   joincjn 14402   meetcmee 14403   Latclat 14475   OPcops 29971   Atomscatm 30062   HLchlt 30149   pmapcpmap 30295   + Pcpadd 30593
This theorem is referenced by:  pl42lem4N  30780
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-undef 6544  df-riota 6550  df-poset 14404  df-plt 14416  df-lub 14432  df-glb 14433  df-join 14434  df-meet 14435  df-p0 14469  df-p1 14470  df-lat 14476  df-clat 14538  df-oposet 29975  df-ol 29977  df-oml 29978  df-covers 30065  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150  df-psubsp 30301  df-pmap 30302  df-padd 30594  df-polarityN 30701  df-psubclN 30733
  Copyright terms: Public domain W3C validator