Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem4N Structured version   Unicode version

Theorem pl42lem4N 30853
Description: Lemma for pl42N 30854. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b  |-  B  =  ( Base `  K
)
pl42lem.l  |-  .<_  =  ( le `  K )
pl42lem.j  |-  .\/  =  ( join `  K )
pl42lem.m  |-  ./\  =  ( meet `  K )
pl42lem.o  |-  ._|_  =  ( oc `  K )
pl42lem.f  |-  F  =  ( pmap `  K
)
pl42lem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pl42lem4N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( F `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )

Proof of Theorem pl42lem4N
StepHypRef Expression
1 pl42lem.b . . . . 5  |-  B  =  ( Base `  K
)
2 pl42lem.l . . . . 5  |-  .<_  =  ( le `  K )
3 pl42lem.j . . . . 5  |-  .\/  =  ( join `  K )
4 pl42lem.m . . . . 5  |-  ./\  =  ( meet `  K )
5 pl42lem.o . . . . 5  |-  ._|_  =  ( oc `  K )
6 pl42lem.f . . . . 5  |-  F  =  ( pmap `  K
)
7 pl42lem.p . . . . 5  |-  .+  =  ( + P `  K
)
81, 2, 3, 4, 5, 6, 7pl42lem1N 30850 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  =  ( ( ( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) ) ) )
983impia 1151 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  =  ( ( ( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) ) )
101, 2, 3, 4, 5, 6, 7pl42lem3N 30852 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
11 simpl1 961 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
12 hllat 30235 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
1311, 12syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  Lat )
14 simpl2 962 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
15 eqid 2438 . . . . . . . . 9  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
161, 15, 6pmapsub 30639 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( F `  X
)  e.  ( PSubSp `  K ) )
1713, 14, 16syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  X )  e.  ( PSubSp `  K )
)
18 simpl3 963 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
191, 15, 6pmapsub 30639 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Y  e.  B )  ->  ( F `  Y
)  e.  ( PSubSp `  K ) )
2013, 18, 19syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  Y )  e.  ( PSubSp `  K )
)
21 simpr2 965 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
221, 15, 6pmapsub 30639 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  W  e.  B )  ->  ( F `  W
)  e.  ( PSubSp `  K ) )
2313, 21, 22syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  W )  e.  ( PSubSp `  K )
)
24 simpr3 966 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
251, 15, 6pmapsub 30639 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  V  e.  B )  ->  ( F `  V
)  e.  ( PSubSp `  K ) )
2613, 24, 25syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  e.  ( PSubSp `  K )
)
2715, 7pmodl42N 30722 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( F `  X
)  e.  ( PSubSp `  K )  /\  ( F `  Y )  e.  ( PSubSp `  K )
)  /\  ( ( F `  W )  e.  ( PSubSp `  K )  /\  ( F `  V
)  e.  ( PSubSp `  K ) ) )  ->  ( ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) )  =  ( ( ( F `  X )  .+  ( F `  Y )
)  .+  ( (
( F `  X
)  .+  ( F `  W ) )  i^i  ( ( F `  Y )  .+  ( F `  V )
) ) ) )
2811, 17, 20, 23, 26, 27syl32anc 1193 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) )  i^i  ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  V ) ) )  =  ( ( ( F `  X )  .+  ( F `  Y )
)  .+  ( (
( F `  X
)  .+  ( F `  W ) )  i^i  ( ( F `  Y )  .+  ( F `  V )
) ) ) )
291, 2, 3, 4, 5, 6, 7pl42lem2N 30851 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( F `  X )  .+  ( F `  Y )
)  .+  ( (
( F `  X
)  .+  ( F `  W ) )  i^i  ( ( F `  Y )  .+  ( F `  V )
) ) )  C_  ( F `  ( ( X  .\/  Y ) 
.\/  ( ( X 
.\/  W )  ./\  ( Y  .\/  V ) ) ) ) )
3028, 29eqsstrd 3384 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) )  i^i  ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  V ) ) )  C_  ( F `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )
3110, 30sstrd 3360 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( F `  ( ( X  .\/  Y ) 
.\/  ( ( X 
.\/  W )  ./\  ( Y  .\/  V ) ) ) ) )
32313adant3 978 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( ( ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  i^i  ( F `
 V ) ) 
C_  ( F `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) )
339, 32eqsstrd 3384 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
)  /\  ( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( F `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) )
34333expia 1156 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( F `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( F `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474   lecple 13541   occoc 13542   joincjn 14406   meetcmee 14407   Latclat 14479   HLchlt 30222   PSubSpcpsubsp 30367   pmapcpmap 30368   + Pcpadd 30666
This theorem is referenced by:  pl42N  30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-psubsp 30374  df-pmap 30375  df-padd 30667  df-polarityN 30774  df-psubclN 30806
  Copyright terms: Public domain W3C validator