MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltirr Unicode version

Theorem pltirr 14097
Description: The less-than relation is not reflexive. (pssirr 3276 analog.) (Contributed by NM, 7-Feb-2012.)
Hypothesis
Ref Expression
pltne.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltirr  |-  ( ( K  e.  A  /\  X  e.  B )  ->  -.  X  .<  X )

Proof of Theorem pltirr
StepHypRef Expression
1 eqid 2283 . 2  |-  X  =  X
2 pltne.s . . . . 5  |-  .<  =  ( lt `  K )
32pltne 14096 . . . 4  |-  ( ( K  e.  A  /\  X  e.  B  /\  X  e.  B )  ->  ( X  .<  X  ->  X  =/=  X ) )
433anidm23 1241 . . 3  |-  ( ( K  e.  A  /\  X  e.  B )  ->  ( X  .<  X  ->  X  =/=  X ) )
54necon2bd 2495 . 2  |-  ( ( K  e.  A  /\  X  e.  B )  ->  ( X  =  X  ->  -.  X  .<  X ) )
61, 5mpi 16 1  |-  ( ( K  e.  A  /\  X  e.  B )  ->  -.  X  .<  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255   ltcplt 14075
This theorem is referenced by:  pospo  14107  atnlt  29503  llnnlt  29712  lplnnlt  29754  lvolnltN  29807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-plt 14092
  Copyright terms: Public domain W3C validator