MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltle Unicode version

Theorem pltle 14305
Description: Less-than implies less-than-or-equal. (pssss 3358 analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
pltval.l  |-  .<_  =  ( le `  K )
pltval.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltle  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  ->  X  .<_  Y ) )

Proof of Theorem pltle
StepHypRef Expression
1 pltval.l . . . 4  |-  .<_  =  ( le `  K )
2 pltval.s . . . 4  |-  .<  =  ( lt `  K )
31, 2pltval 14304 . . 3  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
43simprbda 606 . 2  |-  ( ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C
)  /\  X  .<  Y )  ->  X  .<_  Y )
54ex 423 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  ->  X  .<_  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   class class class wbr 4125   ` cfv 5358   lecple 13423   ltcplt 14285
This theorem is referenced by:  pleval2  14309  pltnlt  14312  pltn2lp  14313  plttr  14314  pospo  14317  atnlt  29574  cvlcvr1  29600  hlrelat  29662  hlrelat3  29672  cvratlem  29681  atltcvr  29695  atlelt  29698  llnnlt  29783  lplnnle2at  29801  lplnnlt  29825  lvolnle3at  29842  lvolnltN  29878  cdlemblem  30053  cdlemb  30054  lhpexle1  30268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366  df-plt 14302
  Copyright terms: Public domain W3C validator