MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltn2lp Unicode version

Theorem pltn2lp 14353
Description: The less-than relation has no 2-cycle loops. (pssn2lp 3391 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b  |-  B  =  ( Base `  K
)
pltnlt.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltn2lp  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )

Proof of Theorem pltn2lp
StepHypRef Expression
1 pltnlt.b . . . . 5  |-  B  =  ( Base `  K
)
2 eqid 2387 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
3 pltnlt.s . . . . 5  |-  .<  =  ( lt `  K )
41, 2, 3pltnle 14350 . . . 4  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  -.  Y ( le `  K ) X )
54ex 424 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  -.  Y ( le `  K ) X ) )
62, 3pltle 14345 . . . 4  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .<  X  ->  Y
( le `  K
) X ) )
763com23 1159 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .<  X  ->  Y
( le `  K
) X ) )
85, 7nsyld 134 . 2  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  -.  Y  .<  X ) )
9 imnan 412 . 2  |-  ( ( X  .<  Y  ->  -.  Y  .<  X )  <->  -.  ( X  .<  Y  /\  Y  .<  X ) )
108, 9sylib 189 1  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394   Basecbs 13396   lecple 13463   Posetcpo 14324   ltcplt 14325
This theorem is referenced by:  plttr  14354
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-poset 14330  df-plt 14342
  Copyright terms: Public domain W3C validator