MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltnle Structured version   Unicode version

Theorem pltnle 14428
Description: Less-than implies not inverse less-than-or-equal. (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
pleval2.b  |-  B  =  ( Base `  K
)
pleval2.l  |-  .<_  =  ( le `  K )
pleval2.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltnle  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  -.  Y  .<_  X )

Proof of Theorem pltnle
StepHypRef Expression
1 pleval2.l . . . 4  |-  .<_  =  ( le `  K )
2 pleval2.s . . . 4  |-  .<  =  ( lt `  K )
31, 2pltval 14422 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
4 pleval2.b . . . . . . . 8  |-  B  =  ( Base `  K
)
54, 1posasymb 14414 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  Y  .<_  X )  <->  X  =  Y ) )
65biimpd 200 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )
)
76expdimp 428 . . . . 5  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y )  ->  ( Y  .<_  X  ->  X  =  Y ) )
87necon3ad 2639 . . . 4  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y )  ->  ( X  =/= 
Y  ->  -.  Y  .<_  X ) )
98expimpd 588 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  X  =/=  Y )  ->  -.  Y  .<_  X ) )
103, 9sylbid 208 . 2  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  -.  Y  .<_  X ) )
1110imp 420 1  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  -.  Y  .<_  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4215   ` cfv 5457   Basecbs 13474   lecple 13541   Posetcpo 14402   ltcplt 14403
This theorem is referenced by:  pltnlt  14430  pltn2lp  14431  ncvr1  30143  cvrnle  30151  atlrelat1  30192  cvrat  30292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-poset 14408  df-plt 14420
  Copyright terms: Public domain W3C validator