MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Unicode version

Theorem plttr 14355
Description: The less-than relation is transitive. (psstr 3395 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b  |-  B  =  ( Base `  K
)
pltnlt.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
plttr  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  .<  Z ) )

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2388 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
2 pltnlt.s . . . . . 6  |-  .<  =  ( lt `  K )
31, 2pltle 14346 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X
( le `  K
) Y ) )
433adant3r3 1164 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Y  ->  X ( le `  K ) Y ) )
51, 2pltle 14346 . . . . 5  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .<  Z  ->  Y
( le `  K
) Z ) )
653adant3r1 1162 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Y  .<  Z  ->  Y ( le `  K ) Z ) )
7 pltnlt.b . . . . 5  |-  B  =  ( Base `  K
)
87, 1postr 14338 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( le `  K ) Y  /\  Y ( le `  K ) Z )  ->  X ( le
`  K ) Z ) )
94, 6, 8syl2and 470 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X
( le `  K
) Z ) )
107, 2pltn2lp 14354 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
11103adant3r3 1164 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
12 breq2 4158 . . . . . . 7  |-  ( X  =  Z  ->  ( Y  .<  X  <->  Y  .<  Z ) )
1312anbi2d 685 . . . . . 6  |-  ( X  =  Z  ->  (
( X  .<  Y  /\  Y  .<  X )  <->  ( X  .<  Y  /\  Y  .<  Z ) ) )
1413notbid 286 . . . . 5  |-  ( X  =  Z  ->  ( -.  ( X  .<  Y  /\  Y  .<  X )  <->  -.  ( X  .<  Y  /\  Y  .<  Z ) ) )
1511, 14syl5ibcom 212 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  =  Z  ->  -.  ( X  .<  Y  /\  Y  .<  Z ) ) )
1615necon2ad 2599 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  =/=  Z ) )
179, 16jcad 520 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  ( X ( le `  K ) Z  /\  X  =/=  Z ) ) )
181, 2pltval 14345 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<  Z  <->  ( X
( le `  K
) Z  /\  X  =/=  Z ) ) )
19183adant3r2 1163 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Z  <->  ( X ( le `  K ) Z  /\  X  =/= 
Z ) ) )
2017, 19sylibrd 226 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  .<  Z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   class class class wbr 4154   ` cfv 5395   Basecbs 13397   lecple 13464   Posetcpo 14325   ltcplt 14326
This theorem is referenced by:  pltletr  14356  plelttr  14357  pospo  14358  ofldchr  24071  hlhgt2  29504  hl0lt1N  29505  lhp0lt  30118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-iota 5359  df-fun 5397  df-fv 5403  df-poset 14331  df-plt 14343
  Copyright terms: Public domain W3C validator