MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval Unicode version

Theorem pltval 14094
Description: Less-than relation. (df-pss 3168 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
pltval.l  |-  .<_  =  ( le `  K )
pltval.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltval  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )

Proof of Theorem pltval
StepHypRef Expression
1 pltval.l . . . . 5  |-  .<_  =  ( le `  K )
2 pltval.s . . . . 5  |-  .<  =  ( lt `  K )
31, 2pltfval 14093 . . . 4  |-  ( K  e.  A  ->  .<  =  (  .<_  \  _I  )
)
43breqd 4034 . . 3  |-  ( K  e.  A  ->  ( X  .<  Y  <->  X (  .<_ 
\  _I  ) Y ) )
5 brdif 4071 . . . 4  |-  ( X (  .<_  \  _I  ) Y 
<->  ( X  .<_  Y  /\  -.  X  _I  Y
) )
6 ideqg 4835 . . . . . . 7  |-  ( Y  e.  C  ->  ( X  _I  Y  <->  X  =  Y ) )
76necon3bbid 2480 . . . . . 6  |-  ( Y  e.  C  ->  ( -.  X  _I  Y  <->  X  =/=  Y ) )
87adantl 452 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  C )  ->  ( -.  X  _I  Y 
<->  X  =/=  Y ) )
98anbi2d 684 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  C )  ->  ( ( X  .<_  Y  /\  -.  X  _I  Y )  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
105, 9syl5bb 248 . . 3  |-  ( ( X  e.  B  /\  Y  e.  C )  ->  ( X (  .<_  \  _I  ) Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
114, 10sylan9bb 680 . 2  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  C
) )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
12113impb 1147 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149   class class class wbr 4023    _I cid 4304   ` cfv 5255   lecple 13215   ltcplt 14075
This theorem is referenced by:  pltle  14095  pltne  14096  pleval2i  14098  pltnle  14100  pltval3  14101  plttr  14104  latnlemlt  14190  latnle  14191  ipolt  14262  opltn0  29380  cvrval2  29464  cvrnbtwn2  29465  cvrnbtwn3  29466  cvrle  29468  cvrnbtwn4  29469  cvrne  29471  atlltn0  29496  hlrelat5N  29590  llnle  29707  lplnle  29729  llncvrlpln2  29746  lplncvrlvol2  29804  lhp2lt  30190  lautlt  30280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-plt 14092
  Copyright terms: Public domain W3C validator