MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval Unicode version

Theorem pltval 14110
Description: Less-than relation. (df-pss 3181 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
pltval.l  |-  .<_  =  ( le `  K )
pltval.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltval  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )

Proof of Theorem pltval
StepHypRef Expression
1 pltval.l . . . . 5  |-  .<_  =  ( le `  K )
2 pltval.s . . . . 5  |-  .<  =  ( lt `  K )
31, 2pltfval 14109 . . . 4  |-  ( K  e.  A  ->  .<  =  (  .<_  \  _I  )
)
43breqd 4050 . . 3  |-  ( K  e.  A  ->  ( X  .<  Y  <->  X (  .<_ 
\  _I  ) Y ) )
5 brdif 4087 . . . 4  |-  ( X (  .<_  \  _I  ) Y 
<->  ( X  .<_  Y  /\  -.  X  _I  Y
) )
6 ideqg 4851 . . . . . . 7  |-  ( Y  e.  C  ->  ( X  _I  Y  <->  X  =  Y ) )
76necon3bbid 2493 . . . . . 6  |-  ( Y  e.  C  ->  ( -.  X  _I  Y  <->  X  =/=  Y ) )
87adantl 452 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  C )  ->  ( -.  X  _I  Y 
<->  X  =/=  Y ) )
98anbi2d 684 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  C )  ->  ( ( X  .<_  Y  /\  -.  X  _I  Y )  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
105, 9syl5bb 248 . . 3  |-  ( ( X  e.  B  /\  Y  e.  C )  ->  ( X (  .<_  \  _I  ) Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
114, 10sylan9bb 680 . 2  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  C
) )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
12113impb 1147 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  C )  ->  ( X  .<  Y  <->  ( X  .<_  Y  /\  X  =/= 
Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162   class class class wbr 4039    _I cid 4320   ` cfv 5271   lecple 13231   ltcplt 14091
This theorem is referenced by:  pltle  14111  pltne  14112  pleval2i  14114  pltnle  14116  pltval3  14117  plttr  14120  latnlemlt  14206  latnle  14207  ipolt  14278  opltn0  30002  cvrval2  30086  cvrnbtwn2  30087  cvrnbtwn3  30088  cvrle  30090  cvrnbtwn4  30091  cvrne  30093  atlltn0  30118  hlrelat5N  30212  llnle  30329  lplnle  30351  llncvrlpln2  30368  lplncvrlvol2  30426  lhp2lt  30812  lautlt  30902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-plt 14108
  Copyright terms: Public domain W3C validator