MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Unicode version

Theorem ply1divalg2 20066
Description: Reverse the order of multiplication in ply1divalg 20065 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divalg.g3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
ply1divalg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
ply1divalg2  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( q  .xb  G ) ) )  <  ( D `  G ) )
Distinct variable groups:    ph, q    B, q    D, q    F, q    G, q    .- , q    P, q    R, q    .xb , q    .0. , q
Allowed substitution hint:    U( q)

Proof of Theorem ply1divalg2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . 3  |-  (Poly1 `  (oppr `  R
) )  =  (Poly1 `  (oppr
`  R ) )
2 ply1divalg.d . . . 4  |-  D  =  ( deg1  `  R )
3 eqidd 2439 . . . . . 6  |-  (  T. 
->  ( Base `  R
)  =  ( Base `  R ) )
4 eqid 2438 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
5 eqid 2438 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
64, 5opprbas 15739 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
76a1i 11 . . . . . 6  |-  (  T. 
->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
8 eqid 2438 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
94, 8oppradd 15740 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  (oppr `  R
) )
109oveqi 6097 . . . . . . 7  |-  ( q ( +g  `  R
) r )  =  ( q ( +g  `  (oppr
`  R ) ) r )
1110a1i 11 . . . . . 6  |-  ( (  T.  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( +g  `  R
) r )  =  ( q ( +g  `  (oppr
`  R ) ) r ) )
123, 7, 11deg1propd 20014 . . . . 5  |-  (  T. 
->  ( deg1  `  R )  =  ( deg1  `  (oppr
`  R ) ) )
1312trud 1333 . . . 4  |-  ( deg1  `  R
)  =  ( deg1  `  (oppr `  R
) )
142, 13eqtri 2458 . . 3  |-  D  =  ( deg1  `  (oppr
`  R ) )
15 ply1divalg.b . . . 4  |-  B  =  ( Base `  P
)
16 ply1divalg.p . . . . . 6  |-  P  =  (Poly1 `  R )
1716fveq2i 5734 . . . . 5  |-  ( Base `  P )  =  (
Base `  (Poly1 `  R
) )
183, 7, 11ply1baspropd 16642 . . . . . 6  |-  (  T. 
->  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  (oppr `  R ) ) ) )
1918trud 1333 . . . . 5  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  (oppr `  R ) ) )
2017, 19eqtri 2458 . . . 4  |-  ( Base `  P )  =  (
Base `  (Poly1 `  (oppr `  R
) ) )
2115, 20eqtri 2458 . . 3  |-  B  =  ( Base `  (Poly1 `  (oppr `  R ) ) )
22 ply1divalg.m . . . 4  |-  .-  =  ( -g `  P )
2320a1i 11 . . . . . 6  |-  (  T. 
->  ( Base `  P
)  =  ( Base `  (Poly1 `  (oppr
`  R ) ) ) )
2416fveq2i 5734 . . . . . . . 8  |-  ( +g  `  P )  =  ( +g  `  (Poly1 `  R
) )
253, 7, 11ply1plusgpropd 16643 . . . . . . . . 9  |-  (  T. 
->  ( +g  `  (Poly1 `  R ) )  =  ( +g  `  (Poly1 `  (oppr `  R ) ) ) )
2625trud 1333 . . . . . . . 8  |-  ( +g  `  (Poly1 `  R ) )  =  ( +g  `  (Poly1 `  (oppr `  R ) ) )
2724, 26eqtri 2458 . . . . . . 7  |-  ( +g  `  P )  =  ( +g  `  (Poly1 `  (oppr `  R
) ) )
2827a1i 11 . . . . . 6  |-  (  T. 
->  ( +g  `  P
)  =  ( +g  `  (Poly1 `  (oppr
`  R ) ) ) )
2923, 28grpsubpropd 14894 . . . . 5  |-  (  T. 
->  ( -g `  P
)  =  ( -g `  (Poly1 `  (oppr
`  R ) ) ) )
3029trud 1333 . . . 4  |-  ( -g `  P )  =  (
-g `  (Poly1 `  (oppr `  R
) ) )
3122, 30eqtri 2458 . . 3  |-  .-  =  ( -g `  (Poly1 `  (oppr `  R
) ) )
32 ply1divalg.z . . . 4  |-  .0.  =  ( 0g `  P )
3315a1i 11 . . . . . 6  |-  (  T. 
->  B  =  ( Base `  P ) )
3421a1i 11 . . . . . 6  |-  (  T. 
->  B  =  ( Base `  (Poly1 `  (oppr
`  R ) ) ) )
3527oveqi 6097 . . . . . . 7  |-  ( q ( +g  `  P
) r )  =  ( q ( +g  `  (Poly1 `  (oppr
`  R ) ) ) r )
3635a1i 11 . . . . . 6  |-  ( (  T.  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( q ( +g  `  P ) r )  =  ( q ( +g  `  (Poly1 `  (oppr `  R
) ) ) r ) )
3733, 34, 36grpidpropd 14727 . . . . 5  |-  (  T. 
->  ( 0g `  P
)  =  ( 0g
`  (Poly1 `  (oppr
`  R ) ) ) )
3837trud 1333 . . . 4  |-  ( 0g
`  P )  =  ( 0g `  (Poly1 `  (oppr `  R ) ) )
3932, 38eqtri 2458 . . 3  |-  .0.  =  ( 0g `  (Poly1 `  (oppr `  R
) ) )
40 eqid 2438 . . 3  |-  ( .r
`  (Poly1 `  (oppr
`  R ) ) )  =  ( .r
`  (Poly1 `  (oppr
`  R ) ) )
41 ply1divalg.r1 . . . 4  |-  ( ph  ->  R  e.  Ring )
424opprrng 15741 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
4341, 42syl 16 . . 3  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
44 ply1divalg.f . . 3  |-  ( ph  ->  F  e.  B )
45 ply1divalg.g1 . . 3  |-  ( ph  ->  G  e.  B )
46 ply1divalg.g2 . . 3  |-  ( ph  ->  G  =/=  .0.  )
47 ply1divalg.g3 . . 3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
48 ply1divalg.u . . . 4  |-  U  =  (Unit `  R )
4948, 4opprunit 15771 . . 3  |-  U  =  (Unit `  (oppr
`  R ) )
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 20065 . 2  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) ) )  < 
( D `  G
) )
5141adantr 453 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  R  e.  Ring )
5245adantr 453 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  G  e.  B )
53 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  q  e.  B )
54 ply1divalg.t . . . . . . . . 9  |-  .xb  =  ( .r `  P )
5516, 4, 1, 54, 40, 15ply1opprmul 16638 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q )  =  ( q  .xb  G
) )
5651, 52, 53, 55syl3anc 1185 . . . . . . 7  |-  ( (
ph  /\  q  e.  B )  ->  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q )  =  ( q  .xb  G
) )
5756eqcomd 2443 . . . . . 6  |-  ( (
ph  /\  q  e.  B )  ->  (
q  .xb  G )  =  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) )
5857oveq2d 6100 . . . . 5  |-  ( (
ph  /\  q  e.  B )  ->  ( F  .-  ( q  .xb  G ) )  =  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )
5958fveq2d 5735 . . . 4  |-  ( (
ph  /\  q  e.  B )  ->  ( D `  ( F  .-  ( q  .xb  G
) ) )  =  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) ) ) )
6059breq1d 4225 . . 3  |-  ( (
ph  /\  q  e.  B )  ->  (
( D `  ( F  .-  ( q  .xb  G ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )  <  ( D `
 G ) ) )
6160reubidva 2893 . 2  |-  ( ph  ->  ( E! q  e.  B  ( D `  ( F  .-  ( q 
.xb  G ) ) )  <  ( D `
 G )  <->  E! q  e.  B  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )  <  ( D `
 G ) ) )
6250, 61mpbird 225 1  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( q  .xb  G ) ) )  <  ( D `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    T. wtru 1326    = wceq 1653    e. wcel 1726    =/= wne 2601   E!wreu 2709   class class class wbr 4215   ` cfv 5457  (class class class)co 6084    < clt 9125   Basecbs 13474   +g cplusg 13534   .rcmulr 13535   0gc0g 13728   -gcsg 14693   Ringcrg 15665  opprcoppr 15732  Unitcui 15749  Poly1cpl1 16576  coe1cco1 16579   deg1 cdg1 19982
This theorem is referenced by:  q1peqb  20082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-fz 11049  df-fzo 11141  df-seq 11329  df-hash 11624  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-0g 13732  df-gsum 13733  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-mhm 14743  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mulg 14820  df-subg 14946  df-ghm 15009  df-cntz 15121  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-cring 15669  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-subrg 15871  df-lmod 15957  df-lss 16014  df-rlreg 16348  df-psr 16422  df-mvr 16423  df-mpl 16424  df-opsr 16430  df-psr1 16581  df-vr1 16582  df-ply1 16583  df-coe1 16586  df-cnfld 16709  df-mdeg 19983  df-deg1 19984
  Copyright terms: Public domain W3C validator