MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Unicode version

Theorem ply1divalg2 20018
Description: Reverse the order of multiplication in ply1divalg 20017 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divalg.g3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
ply1divalg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
ply1divalg2  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( q  .xb  G ) ) )  <  ( D `  G ) )
Distinct variable groups:    ph, q    B, q    D, q    F, q    G, q    .- , q    P, q    R, q    .xb , q    .0. , q
Allowed substitution hint:    U( q)

Proof of Theorem ply1divalg2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eqid 2408 . . 3  |-  (Poly1 `  (oppr `  R
) )  =  (Poly1 `  (oppr
`  R ) )
2 ply1divalg.d . . . 4  |-  D  =  ( deg1  `  R )
3 eqidd 2409 . . . . . 6  |-  (  T. 
->  ( Base `  R
)  =  ( Base `  R ) )
4 eqid 2408 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
5 eqid 2408 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
64, 5opprbas 15693 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
76a1i 11 . . . . . 6  |-  (  T. 
->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
8 eqid 2408 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
94, 8oppradd 15694 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  (oppr `  R
) )
109oveqi 6057 . . . . . . 7  |-  ( q ( +g  `  R
) r )  =  ( q ( +g  `  (oppr
`  R ) ) r )
1110a1i 11 . . . . . 6  |-  ( (  T.  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( +g  `  R
) r )  =  ( q ( +g  `  (oppr
`  R ) ) r ) )
123, 7, 11deg1propd 19966 . . . . 5  |-  (  T. 
->  ( deg1  `  R )  =  ( deg1  `  (oppr
`  R ) ) )
1312trud 1329 . . . 4  |-  ( deg1  `  R
)  =  ( deg1  `  (oppr `  R
) )
142, 13eqtri 2428 . . 3  |-  D  =  ( deg1  `  (oppr
`  R ) )
15 ply1divalg.b . . . 4  |-  B  =  ( Base `  P
)
16 ply1divalg.p . . . . . 6  |-  P  =  (Poly1 `  R )
1716fveq2i 5694 . . . . 5  |-  ( Base `  P )  =  (
Base `  (Poly1 `  R
) )
183, 7, 11ply1baspropd 16596 . . . . . 6  |-  (  T. 
->  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  (oppr `  R ) ) ) )
1918trud 1329 . . . . 5  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  (oppr `  R ) ) )
2017, 19eqtri 2428 . . . 4  |-  ( Base `  P )  =  (
Base `  (Poly1 `  (oppr `  R
) ) )
2115, 20eqtri 2428 . . 3  |-  B  =  ( Base `  (Poly1 `  (oppr `  R ) ) )
22 ply1divalg.m . . . 4  |-  .-  =  ( -g `  P )
2320a1i 11 . . . . . 6  |-  (  T. 
->  ( Base `  P
)  =  ( Base `  (Poly1 `  (oppr
`  R ) ) ) )
2416fveq2i 5694 . . . . . . . 8  |-  ( +g  `  P )  =  ( +g  `  (Poly1 `  R
) )
253, 7, 11ply1plusgpropd 16597 . . . . . . . . 9  |-  (  T. 
->  ( +g  `  (Poly1 `  R ) )  =  ( +g  `  (Poly1 `  (oppr `  R ) ) ) )
2625trud 1329 . . . . . . . 8  |-  ( +g  `  (Poly1 `  R ) )  =  ( +g  `  (Poly1 `  (oppr `  R ) ) )
2724, 26eqtri 2428 . . . . . . 7  |-  ( +g  `  P )  =  ( +g  `  (Poly1 `  (oppr `  R
) ) )
2827a1i 11 . . . . . 6  |-  (  T. 
->  ( +g  `  P
)  =  ( +g  `  (Poly1 `  (oppr
`  R ) ) ) )
2923, 28grpsubpropd 14848 . . . . 5  |-  (  T. 
->  ( -g `  P
)  =  ( -g `  (Poly1 `  (oppr
`  R ) ) ) )
3029trud 1329 . . . 4  |-  ( -g `  P )  =  (
-g `  (Poly1 `  (oppr `  R
) ) )
3122, 30eqtri 2428 . . 3  |-  .-  =  ( -g `  (Poly1 `  (oppr `  R
) ) )
32 ply1divalg.z . . . 4  |-  .0.  =  ( 0g `  P )
3315a1i 11 . . . . . 6  |-  (  T. 
->  B  =  ( Base `  P ) )
3421a1i 11 . . . . . 6  |-  (  T. 
->  B  =  ( Base `  (Poly1 `  (oppr
`  R ) ) ) )
3527oveqi 6057 . . . . . . 7  |-  ( q ( +g  `  P
) r )  =  ( q ( +g  `  (Poly1 `  (oppr
`  R ) ) ) r )
3635a1i 11 . . . . . 6  |-  ( (  T.  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( q ( +g  `  P ) r )  =  ( q ( +g  `  (Poly1 `  (oppr `  R
) ) ) r ) )
3733, 34, 36grpidpropd 14681 . . . . 5  |-  (  T. 
->  ( 0g `  P
)  =  ( 0g
`  (Poly1 `  (oppr
`  R ) ) ) )
3837trud 1329 . . . 4  |-  ( 0g
`  P )  =  ( 0g `  (Poly1 `  (oppr `  R ) ) )
3932, 38eqtri 2428 . . 3  |-  .0.  =  ( 0g `  (Poly1 `  (oppr `  R
) ) )
40 eqid 2408 . . 3  |-  ( .r
`  (Poly1 `  (oppr
`  R ) ) )  =  ( .r
`  (Poly1 `  (oppr
`  R ) ) )
41 ply1divalg.r1 . . . 4  |-  ( ph  ->  R  e.  Ring )
424opprrng 15695 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
4341, 42syl 16 . . 3  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
44 ply1divalg.f . . 3  |-  ( ph  ->  F  e.  B )
45 ply1divalg.g1 . . 3  |-  ( ph  ->  G  e.  B )
46 ply1divalg.g2 . . 3  |-  ( ph  ->  G  =/=  .0.  )
47 ply1divalg.g3 . . 3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
48 ply1divalg.u . . . 4  |-  U  =  (Unit `  R )
4948, 4opprunit 15725 . . 3  |-  U  =  (Unit `  (oppr
`  R ) )
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 20017 . 2  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) ) )  < 
( D `  G
) )
5141adantr 452 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  R  e.  Ring )
5245adantr 452 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  G  e.  B )
53 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  q  e.  B )
54 ply1divalg.t . . . . . . . . 9  |-  .xb  =  ( .r `  P )
5516, 4, 1, 54, 40, 15ply1opprmul 16592 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q )  =  ( q  .xb  G
) )
5651, 52, 53, 55syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  q  e.  B )  ->  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q )  =  ( q  .xb  G
) )
5756eqcomd 2413 . . . . . 6  |-  ( (
ph  /\  q  e.  B )  ->  (
q  .xb  G )  =  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) )
5857oveq2d 6060 . . . . 5  |-  ( (
ph  /\  q  e.  B )  ->  ( F  .-  ( q  .xb  G ) )  =  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )
5958fveq2d 5695 . . . 4  |-  ( (
ph  /\  q  e.  B )  ->  ( D `  ( F  .-  ( q  .xb  G
) ) )  =  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) ) ) )
6059breq1d 4186 . . 3  |-  ( (
ph  /\  q  e.  B )  ->  (
( D `  ( F  .-  ( q  .xb  G ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )  <  ( D `
 G ) ) )
6160reubidva 2855 . 2  |-  ( ph  ->  ( E! q  e.  B  ( D `  ( F  .-  ( q 
.xb  G ) ) )  <  ( D `
 G )  <->  E! q  e.  B  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )  <  ( D `
 G ) ) )
6250, 61mpbird 224 1  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( q  .xb  G ) ) )  <  ( D `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721    =/= wne 2571   E!wreu 2672   class class class wbr 4176   ` cfv 5417  (class class class)co 6044    < clt 9080   Basecbs 13428   +g cplusg 13488   .rcmulr 13489   0gc0g 13682   -gcsg 14647   Ringcrg 15619  opprcoppr 15686  Unitcui 15703  Poly1cpl1 16530  coe1cco1 16533   deg1 cdg1 19934
This theorem is referenced by:  q1peqb  20034
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028  ax-addf 9029  ax-mulf 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-ofr 6269  df-1st 6312  df-2nd 6313  df-tpos 6442  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-pm 6984  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-oi 7439  df-card 7786  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-fz 11004  df-fzo 11095  df-seq 11283  df-hash 11578  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-starv 13503  df-sca 13504  df-vsca 13505  df-tset 13507  df-ple 13508  df-ds 13510  df-unif 13511  df-0g 13686  df-gsum 13687  df-mre 13770  df-mrc 13771  df-acs 13773  df-mnd 14649  df-mhm 14697  df-submnd 14698  df-grp 14771  df-minusg 14772  df-sbg 14773  df-mulg 14774  df-subg 14900  df-ghm 14963  df-cntz 15075  df-cmn 15373  df-abl 15374  df-mgp 15608  df-rng 15622  df-cring 15623  df-ur 15624  df-oppr 15687  df-dvdsr 15705  df-unit 15706  df-invr 15736  df-subrg 15825  df-lmod 15911  df-lss 15968  df-rlreg 16302  df-psr 16376  df-mvr 16377  df-mpl 16378  df-opsr 16384  df-psr1 16535  df-vr1 16536  df-ply1 16537  df-coe1 16540  df-cnfld 16663  df-mdeg 19935  df-deg1 19936
  Copyright terms: Public domain W3C validator